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Abstract

This dissertation presents new numerical methods for the solution of fractional differen-
tial equations of single and distributed order that find application in the different fields of
physics and engineering.

We start by presenting the relationship between fractional derivatives and processes like
anomalous diffusion, and, we then develop new numerical methods for the solution of the
time-fractional diffusion equations.

The first numerical method is developed for the solution of the fractional diffusion equa-
tions with Neumann boundary conditions and the diffusivity parameter depending on the
space variable. The method is based on finite differences, and, we prove its convergence
(convergence order of O(Az? + At*7%), 0 < a < 1) and stability. We also present a brief
description of the application of such boundary conditions and fractional model to real
world problems (heat flux in human skin). A discussion on the common substitution of
the classical derivative by a fractional derivative is also performed, using as an example the
temperature equation.

Numerical methods for the solution of fractional differential equations are more difficult
to develop when compared to the classical integer-order case, and, this is due to potential
singularities of the solution and to the nonlocal properties of the fractional differential op-
erators that lead to numerical methods that are computationally demanding .

We then study a more complex type of equations: distributed order fractional differ-
ential equations where we intend to overcome the second problem on the numerical ap-
proximation of fractional differential equations mentioned above. These equations allow
the modeling of more complex anomalous diffusion processes, and can be viewed as a con-
tinuous sum of weighted fractional derivatives. Since the numerical solution of distributed
order fractional differential equations based on finite differences is very time consuming, we
develop a new numerical method for the solution of the distributed order fractional differ-
ential equations based on Chebyshev polynomials and present for the first time a detailed
study on the convergence of the method.

The third numerical method proposed in this thesis aims to overcome both problems
on the numerical approximation of fractional differential equations. We start by solving the
problem of potential singularities in the solution by presenting a method based on a non-
polynomial approximation of the solution. We use the method of lines for the numerical
approximation of the fractional diffusion equation, by proceeding in two separate steps: first,
spatial derivatives are approximated using finite differences; second, the resulting system of
semi-discrete ordinary differential equations in the initial value variable is integrated in time
with a non-polynomial collocation method. This numerical method is further improved by
considering graded meshes and an hybrid approximation of the solution by considering a
non-polynomial approximation in the first subinterval which contains the origin in time (the
point where the solution may be singular) and a polynomial approximation in the remaining
intervals. This way we obtain a method that allows a faster numerical solution of fractional
differential equations (than the method obtained with nonpolynomial approximation) and
also takes into account the potential singularity of the solution.

'The thesis ends with the main conclusions and a discussion on the main topics presented
along the text, together with a proposal of future work.
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Introduction 1

1.1 'The (brief) History of Fractional Calculus

The concept of a derivative in the sense of a tangent line is a very old one, and can be traced
back to 300 BC, but, the modern development of calculus is usually credited to Sir Isaac
Newton (1642-1727) and Gotfried Wihelm Leibniz (1646-1716) for their new notations,
new approaches to differentiation and derivatives, and most important, the fundamental
theorem of calculus relating differentiation and integration [1].

Newton was an English mathematician, astronomer, and physi-
cist that laid the foundations of classical mechanics. He also for-
mulated the laws of motion and universal gravitation. Gottfried
Wilhelm (von) Leibniz was a German polymath and philosopher
who occupies a prominent place in the history of mathematics

and the history of philosophy, having developed differential and

FiGure 1.1:  Newton integral calculus independently of Isaac Newton [2; 3].

and Leibniz

Regarding fractional differential calculus, it is wrong to think that this is a recent subject.
For instance, the symbol d"y/dx™ was first proposed by Leibniz, and, in 1695 L'Hépital
asked Leibniz the meaning of d"y/dx"™ if n = 1/2; thatis” whatif n is fractional?”. Leibniz
responded with the following [1]:

”...Although infinite series and geometry are distant relations, infinite series
admits only the use of exponents that are positive and negative integers and does
not, as yet, know the use of fractional exponents...”

He continues with:

”This is an apparent paradox from which, one day, useful consequences will
be drawn.”

This letter can be understood as the beginning of fractional differential calculus, and, the
name fractional comes from the IHoépital question regardind the fraction 1/2 (although the

1



1. INTRODUCTION

order of differentiation may be a real or a complex number). From this letter, we learn that
the traditional (integer-order) and the fractional differential calculus were born almost at
the same time.

Marquis de I'Hopital was a French mathematician, being well
known for the 'Hopital’s rule for calculating limits involving in-
determinate forms 0/0 and co/co. He published a treatise on
the infinitesimal calculus, entitled Analyse des Infiniment Petits
pour I'Intelligence des Lignes Courbes. This book was a first
systematic exposition of differential calculus. The books publi-
cation is controversial because I'Hopital made a proposal to Jo-
hann Bernoulli: in exchange for an annual payment of 300 Francs,

Bernoulli would inform L'Hépital of his latest mathematical dis-

coveries [2; 3].

F1Gure 1.2: L'Hépital

Besides the 1695 letter, other letters were written regarding this subject. In 1697, Leib-
niz sent letters to J. Wallis and J. Bernoulli, and, he mentioned the possible approach to
fractional-order differentiation in that sense, that for non-integer values of n the definition
could be the following, 2= = gme®”.

In 1716 Leibniz died, but, the urge to understand the derivatives of fractional order
increased, and several other authors devoted their time to the subject. The well known
Leonard Euler also contributed to the understanding and generalization of fractional differ-
ential calculus. He generalized the notion of factorial n! to non-integer values, latter called
gamma function (I' (.)) by Adrien-Marie Legendre around 1811,

I'(z)= /000 t*tetdt (1.1)

with Re(z) > 0.

Leonhard Euler was a Swiss mathematician, physicist, as-
tronomer, logician and engineer. He was one of the most emi-
nent mathematicians of the 18th century, and is held to be one
of the greatest in history. He is also widely considered to be the
most prolific mathematician of all time. Adrien-Marie Legendre
was a French mathematician. He is well-known for the Legendre

polynomials and Legendre transformation. Curiosity: for two
centuries, until the recent discovery of the error in 2005, books,
FiGURrE 1.3: Euler and paintings and articles have incorrectly shown a side-view portrait
Legendre of the obscure French politician Louis Legendre (1752-1797) as
that of the mathematician Legendre [2; 3].

Another important discovery was the Beta function in 1730 (also called the Euler inte-
gral of the first kind), denoted by B (a, b) due to Jacques Binet (1786-1856),

B (a,b) = /01 2971 (1 — 2)"" ' dz, Re(a) > 0, Re(b) > 0. (1.2)



1.1. The (brief) History of Fractional Calculus

Between 1810 and 1819, the French mathematician Sylvestre Francois Lacroix (1765-
1843) adopted Euler’s derivation for his successful textbook Traite du Calcul Diferentiel et
du Calcul Integral [4]. Using the gamma function, Lacroix showed that the derivative of
™, d;;: =m(m—1)...(m—n+1)z™ ™ could be generalized for arbitrary fractional
o and 3 by simply writting the derivative with the help of gamma function:

ez T(B+1) 4.,
v T(F—at))" (13)

Jacques Philippe Marie Binet was a French mathematician, physi-

_ cist and astronomer. He made significant contributions to num-
" ber theory, and the mathematical foundations of matrix algebra.
! He is also recognized as the first to describe the rule for mul-
| tiplying matrices in 1812. He was a professor of mechanics at
the Ecole Polytechnique, succeeding Poisson in 1815. Sylvestre
Francois Lacroix was a French mathematician. Lacroix’s path to
mathematics started with the novel Robinson Crusoe. That gave
FiGURE 1.4: Binet and him an interest in sailing and thus navigation too. At that point
Lacroix geometry captured his interest and the rest of mathematics fol-

lowed [2; 3].

Later, Joseph Fourier (1768-1830) gave the first step to the generalization of the no-
tion of differentiation for arbitrary functions with his 1822 book, Theorie Analytique de la
Chaleur [5]. He obtained the following integral representation of a function f (),

1 [*e ee
f(x)= Py 7 (z) dz/ cost (x — z)dt (1.4)
and noted that,
d"f(z) 1 [T too nw
o _%/OO f(z)dz/oo t" cos (tm—tz—i—?) dt (1.5)

'This formula could serve as a definition of the n-th order derivative for non-integer n.

Until 1822, the only interest on fractional differential calculus was merely to set the basis
of this field, and, there were no attempts to describe physical phenomena with this type of
more generalized derivatives.

In 1823, Niels Henrik Abel [6] applied the fractional differential calculus in the solution
of the tautochrone problem (to find the curve for which the time taken by an object sliding
without friction in uniform gravity to its lowest point is independent of its starting point).



I.

INTRODUCTION

Jean-Baptiste Joseph Fourier was a French mathematician and
physicist and best known for initiating the investigation of
Fourier series. He took a prominent part in promoting the French
Revolution, serving on the local Revolutionary Committee. He
was imprisoned briefly in 1795. He succeeded Joseph-Louis La-
grange at the Ecole Polytechnique. Niels Henrik Abel was a Nor-

wegian mathematician. His most famous single result is the first
Fie Fouri complete proof demonstrating the impossibility of solving the

IGURE I.§: ourier . .. . o .
and Abel > general quintic equation in radicals. Abel made his discoveries

while living in poverty and died at the age of 26 [2; 3].

Later (1832), Liouville (possibly inspired by the solution given by Abel [7]) presented
two different definitions for the fractional derivatives [8]. The first definition is based on
a series that depends on the order of differentiation to be convergent. Liouville second
definition of fractional derivative applies to functions of the form x~ with @ > 0. He
considered the integral [ u®~'e~*“du, and by performing the transformation u = £ we
have that du = 1dz and [j° u*te ""du = 7@ [ t* e~ 'dt = 27T (a),

1

= —— - u® e U dy. (1.6)
I'(a) /0

By applying the derivative operator on both side of the equation [9], a fractional order

derivative is obtained for the function 2%,

as (xia) _ (_1)04 r (a + Oé) —a—a
dze I (a v (1.7)

This derivative is of no use for functions other than rational.

There is a main difference between the definition provided by Lacroix and the definition
by Liouville (Eq. 1.7). The first one gives a nonzero value for the fractional derivative of a
constant, while the second one gives zero. This lead to a great discussion in the 19th century,
regarding whose definition was the correct one.

Following the timeline, Riemann was the next well known mathematician to present a
definition for the fractional derivative. His idea is shared with Liouville, since Liouville has
probably influenced Riemann, with his memoirs.

Bernhard Riemann was a German mathematician who made con-
tributions to analysis, number theory, and differential geometry.
In the field of real analysis, he is mostly known for the first rigor-
ous formulation of the integral, the Riemann integral. In 1859,
following Lejeune Dirichlet’s death, he was promoted to head
the mathematics department at Gottingen. He was also the first
to suggest using dimensions higher than merely three or four in
order to describe physical reality. Joseph Liouville was a French
mathematician. He was appointed as professor at the Ecole Poly-
technique in 1838. He worked in a number of different fields

F1GURE 1.6: Riemann
in mathematics, including number theory, complex analysis, dif-

and Liouville
ferential geometry and topology, mathematical physics and as-

tronomy. He is remembered particularly for Liouville’s theorem

[2; 3].
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Based on the fact that {1, z, 2, ... , x”_l} is a fundamental solution set of the homo-
geneous equation, d dz’(f) = 0, Riemann tried to find the solution y (z) of 2 dZSf ) = 7 (z)

with d < z < e and f (x) a continuous function on this interval. At that time, Riemann
obtained some inconsistencies in his results.

Note that by setting the boundary conditions y*) (a) = 0 with 0 < k < n — 1,
a € (d, e), the solution obtained is unique and given by,

_ 1 * 7 — n—1
v = oy [ 0w 1.9

n—1

By naturally extending this equation from integer n to non-integer order a we have the
Riemann-Liouville definition of fractional order integral,

Y= ol f (2) = F(la) / (w— 1)L F () dt (1.9)

with @ > 0. The symbol ,J denotes the integration of arbitrary order along the x axis,
with a and 2 the limits of integration.

'The corresponding derivative is calculated using Lagrange’s rule for differential opera-
tors. Computing the n-th order derivative over the integral of order (n — «), the o order
derivative is obtained (n is the nearest integer bigger than «),

D2 f (2) = g f () (1.10)

T dgn T

Note that the original definition provided by Riemann and Liouville was not (exactly)
the one given by Eq. 1.9 (see [7], [10]). When a = 0 we have Riemann’s definition and
when a = —oo Liouville definition is equivalent to Eq. 1.9. Also, it is important to note
that Eq. 1.9 verifies some important properties expected from an operator of this kind [7].

Before the Riemann-Liouville formula was achieved, there were some important works
that need to be stated. First, the work of Cauchy, that defined the Cauchy’s differentiation
formula [11],

Drf(z) = /(f(t)dt (1.11)
Y

- % t— Z)TH—]

with D™ the n-th derivative operator and y a closed contour on which f (z) is analytic.

In 1892 Hadamard, [12] proposed another definition for the fractional integral and
also for the fractional derivative. For more on this subject, the following works are advised
[13; 14; 15].

In 1917, Weyl [16] proposed another interesting definition, similar to the Riemann-

Liouville definition, but with different terminals of integration and different kernel function
-1
(t—a)* .
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Baron Augustin-Louis Cauchy was a French mathematician who
made pioneering contributions to analysis. He stated and proved

v

the theorems of calculus rigorously. He wrote approximately
eight hundred research articles and five complete textbooks. He

worked as a engineer but always tried to become a pure mathe-

matician. In 1815 he became a professor at Ecole Polytechnique.
Jacques Hadamard was also a French mathematician. He made
Ficure 1.7:  Cauchy contributions in number theory, complex function theory, differ-
and Hadamard ential geometry and partial differential equations [2; 3].

Griinwald (1867 [17]) and Post (1930 [18]) presented the idea of fractional derivative
as the limit of a sum, using the classical definitions of a derivative (this concept was also
introduced by by Aleksey Vasilievich Letnikov). In 1927, Marchaud [19] formulated an
equivalent fractional derivative of arbitrary order. The equivalence was shown by Samko et
al. [13] (see [20] for a detailed explanation).

It should be mentioned that in 1903 the Mittag-LefHer function was presented to the
world [21], and it plays an important role in fractional calculus. We can say that the Mittag-
Leffler function stands for fractional differential equations as the exponential function stands
for classical differential equations (The Mittag-Lefller function is a generalization of the
exponential function). The Mittag-Leffler function with one parameter « is given by:

0 k

Ea(z) = m 2 €C, Re(a) > 0 (1.12)

and the version with two parameters (« and /3) is given by:

0 0. 1.13
kZ:OI‘ak’—Fﬂ a>0,5> (113)

In 1940, Erdélyi [22] and Kober [23] presented what we call now the Erdélyi-Kober
fractional integral. 'This operator generalizes the Riemann fractional integral and the Weyl
integral.

Later, Riesz also proposed a new fractional integral [24]. His integral was successfully
used in Potential theory.

Michele Caputo started his academic life as an assistant Professor
= 1 of Mathematics at the University of Ferrara, in 1950. He con-
' tributed with many papers on the fields of Geophysics, Geodesy,
Rheology, Seismology, Fractional calculus, Applied mathematics
and Finance. He is best known in the world of fractional calculus

for his definition of fractional derivative, and, he is still active.
Ficure 1.8: Caputo

'There is another option for computing fractional derivatives, the Caputo fractional deriva-
tive. It was introduced by M. Caputo in 1967 [25] (several other authors presented the idea,
but, such derivative is associated with M. Caputo because he was among the first to use this
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operator in applications, and to study some of its properties). In contrast to the Riemann-
Liouville fractional derivative, when solving differential equations using Caputo’s definition,
it is not necessary to define the fractional order initial conditions (usually not known and
with no physical meaning).

The Caputo fractional derivative is obtained by computing an ordinary derivative fol-
lowed by the fractional integral, whereas the Riemann-Liouville is obtained in reverse order
(more on this will be shown later). Under certain conditions it can be show that all these
definitions are equivalent.

Several other definitions and new studies exist in the literature. In 1928 Hardy and
Littlewood [26] presented a monograph where they gave a systematic treatment of certain
theorems based on the properties of the Riemann-Liouville integrals and derivatives of ar-
bitrary order of functions of certain standard classes, in particular the Lebesgue classes L,
the Lipschitz classes Lip (k) and more general classes of functions which satisfy integrated
Lipschitz conditions. In 1932 they extended their early paper to the complex field [27].
In 1927, Davis [28] presented a paper where he shows the benefits from using fractional
calculus for certain functional equations. In 1938, Love and Young [29] developed the frac-
tional version of the integration by parts, using the Riemann- Liouville and Weyl integrals.
The formulas were given for the Lebesgue, Riemann-Stieltjes, and generalized Stieltjes in-
tegrals. In 1967 Love [30] devised explicit solutions for two integral equations, and also
devised necessary and sufficient conditions for existence, and sufficient for uniqueness, of
solutions. Later, in 1971, Love [31] extended the properties of the fractional calculus of
real order to the complex order. Pitcher and Sewell [32] (1938) proved some theorems on
the existence and uniqueness of solutions of the differential equation DSy = ¢ (x,y) ,
a > 0, where ¢ (z,y) is a known function, y (x) is an unknown function, and , D27 is the
Riemann-Liouville generalized derivative. In 1945 Zygmund [33] presented a theorem on
the fractional derivatives and in 1965 Stein and Zygmund [34] published a paper on the
necessary and sufficient conditions for a function to have a fractional derivative. In 1968
Welland published two papers on this subject, in one paper, Welland [35] studied the frac-
tional differentiation for functions with lacunary Fourier series (lacunary series is an analytic
function that cannot be analytically continued anywhere outside the radius of convergence),
and, on the other paper he presented an extension of the fractional derivative for functions
of several variables [36]. In 1972 Prabhakar [37] studied integral equations with the kernels
containing a confluent hypergeometric function in two variables, by using fractional integra-
tion. In 1973, Saxena and Kumbhat, introduced two new fractional integration operators
associated with the H-function of two variables.

In 1974 the first conference on fractional calculus was held at New Haven. Since then,
the number of papers and books on the subject has increased significantly. Some important
papers are the ones by Campos (1984)[38], where a generalization of both the Cauchy and
Weyl integrals was devised, and, the rules of association and commutation for the derivatives
of complex orders were proved, and the papers by Debnath and Grum (1988) [39; 40]
where they studied the concepts and properties of derivintegrals of arbitrary order (real or
complex), demonstrated the relation between the Cauchy formula for repeated integrals
and the Riemann-Liouville integral of integer order, and developed a systematic method of
evaluation of the derivintegrals of the important transcendental and special functions.

Regarding the existence, uniqueness, smoothness and stability of ordinary fractional
differential equations of the Caputo type, it is worth mentioning that Kai Diethelm and
Neville J. Ford were the first to study this subject, providing relevant results for the scientific
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community, and, that they also developed several numerical methods that are still regularly
used in the numerical solution of fractional differential equations [41; 42; 43; 44; 45; 46; 47,
48; 49; 50; 51; 52; 53; 54; 55].

More information on this subject can be found in the paper by Machado et al. [56]
entitled Recent history of fractional calculus, where a survey of the literature is presented.

Nowadays it is still impossible to say that one definition is better than the other one
(although it is fair to say that the Caputo definition is often used for the application of
fractional calculus to physics).

Perhaps the various definitions are particular cases of a more general theory, yet to come.

A question that we should ask ourselves is:

"Why study fractional differential calculus, if we cannot find a unique definition for the
fractional derivative?”

There are at least two reasons. First, we already found application of this theory to
different fields of physics and engineering. Note that the real breakthrough is to prove and
deduce that a model with a fractional derivative is more correct than the integer order one.
For more on fractional calculus applications see [57], [58], [59], [20].

Second, in the beginning of times there were only natural numbers, and nowadays, we
do not have a gap between number 3 and number 4, because, real numbers exist. ‘The main
difference is that we need the real numbers in our daily lives, while, we still do not need
fractional derivatives to survive.

In short, fractional differential and integral calculus is still under strong development
and prone to modifications. It is not a consensual field of mathematics.
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1.2 Fractional Derivatives

Wohat is the best definition of fractional derivative?

"I would say it depends on who asks!” Prof. Neville Ford (2015)

1.2.1 Introduction

We now present the basic theory on fractional derivatives and integrals, allowing this thesis
to become self-contained. We start by presenting the mathematical preliminaries that will
be useful when presenting the main results on fractional derivatives, numerical analysis,
solvability, convergence and stability. Based on the quotation by Prof. Neville Ford, we
then present the main definitions of fractional derivatives that are the Riemann-Liouville
and the Caputo. Since the Griinwald—Letnikov definition evolves from the classical finite
difference approximation, special attention is also given to this definition.

1.2.2 Mathematical Preliminaries

The results that are about to be presented, heavily rely on the exposition by Kai Diethelm
[60], Samko, Kilbas and Marichev [61] and Podlubny [20].

1.2.2.1 Basic Concepts

Definition 1.2.1 Riemann Integrable Functions: Let f be a bounded function defined on a closed
interval [a,b]. We say that fis Riemann integrable on |a, b] if the infimum of upper sums through
all partitions of [a, b] is equal to the supremum of all lower sums through all partitions of [, b].

Lemma 1.2.1 If f is continuous on [a, b), then f is Riemann-integrable on |a, b].

We now present the Fundamental Theorem of Calculus, that will be later generalized
to Lebesgue spaces.

Theorem 1.2.1 Fundamental Theorem of Calculus: Let f : [a,b] — R be a continuous func-
tion, and let F : [a,b] — R be defined by

F(x) = /f(t)dt. (1.14)
a
Then, F is differentiable and dF
F = = f. (1.15)

In order to write in a more compact way some of the results to come, we now define the
following differential and integral operators.
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Definition 1.2.2 Derivative and Integral Operators: We denote by D the differential operator
that maps a function f into its derivative D f(x) = f'(x) and by J, the integral operator that
maps a funtion f(x) into its primitive (whenever the integration can be performed on the compact
interval [a, b]):

Juf(z) = / F(t)dt, « € [a, b] (1.16)
These operators can be generalized to perform n-fold iterates:
n _ i iﬁ _ nlpn—1
D"f(x) = iy D D" f(x), (1.17)

J;Lf(m):/x.../z/zf(t)dt:J;J]]1f(:r). (1.18)

Lemma 1.2.2 n-fold Integration: Let f be Riemann integrable on [a, b]. Then, fora < x < b

andn € N, we have -

i /(:r — )" Lf(t)dt (1.19)

Jff(l’):ﬁ

a

Lemma 1.2.3 n-fold Integration: Letm, n € N, withm > n, and let f be a function with a
continuous n* derivative on the interval [a, b]. Then,

D"f = D™, (1.20)

The previous two lemmata together with the Gamma function defined before, set the
basis for the defining fractional derivatives of the Riemann-Liouville and Caputo type.

Let us now define some spaces that will be useful along the thesis.

Definition 1.2.3 Space Ly,: Let Q) = [a, b, —oo < a < b < oo. Ly, represents the set of all
Lebesgue measurable functions f(x) : Q8 — R for which f: |f()Pdt < oo (1<p< o).

Definition 1.2.4 Space Loo: Let Q = [a,b], —00 < a < b < 00. Lo consists of all
measurable functions f (z) : Q — R that are almost everywhere bounded, that is, 3c € R :
p({|f] > c}) = 0, where pu is the Lebesgue measure.

Definition 1.2.5 L, Norms: We set the norm

1/p

b
91, = | [1rora) (1.21)
a
and its extension to p = 00,
[flloe = ess sup | f(2)] (1.22)
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where ess sup is the essencial supreme, the proper generalization to measurable functions of
the maximum (the values of a function on a set of measure zero don’t affect the essential supremum,).

Definition 1.2.6 C™ Spaces: Let f : [a,b] — R andm € Ny = {0,1,2, ...}, the space C™
is the set of functions [ with a continuous mt* derivative (f € C° means that the Sfunction is
continuous).

Theorem 1.2.2 Fundamental Theorem in Lebesgue Spaces: Let f € Li[a, b]. Then, Jof is
differentiable almost everywhere in [a, b and DJ, f = f also holds almost everywhere on [a, b].

Definition 1.2.7 Absolutely Continuous Function: A function f(x) is called absolutely contin-
uous on an interval Q, if for any € > O there exists a § > 0 such that for any finite set of Ppairwise
non-intersecting intervals [ay,by] C Q, k = 1,2,...,n, such that y (b, — ax) < 0, the
inequalityy p_, | f(bx) — f(ag)| < € holds. The space of these functions is denoted by A(LY).

Definition 1.2.8 A" Space: Consider the finite interval Q0 = [a, . It is known that the space
A(Q) coincides with the space of primitives of Lebesgue summable functions, that is:

f(z) € AQ) & flz) =+ / Bt)dt, (1) € Li(9) (1.23)

Therefore, for an absolutely continuous function f we have that )(t) = f'(t) and c = f(a).
Letn € N={0,1,2,...}, and, A™(Y) denote the set of functions with an absolutely continuous
(n — 1)st derivative, i.e. the functions f for which there exists (almost everywhere) a function
g € L1(S2) such that

x

FD(z) = =D (q) +/g(t)dt. (1.24)

a

Lemma 1.2.4 The space A™(Y) consists only of functions f(x) that can be represented in the
Sform:

z n—1

! ; /(m — 0" p(t)dt + Y eplx — a)t (1.25)

(n—1 prt

flz) =

a

with Y(t) € L1(Q) and ¢y, arbitrary constants (k = 0,1, ...,n — 1). Moreover, we have that
*)(q
() = f(t) and o, = L.

1.2.2.2 Riemann-Liouville Integral
We start by presenting the definition of the Riemann-Liouville Integral:

Definition 1.2.9 Riemann-Liouville Fractional Integral Letn € R and J} be the operator
defined on Ly [a, b] by

11
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xT

I f(z) = F(ln) / (@ — " f(t)dt, = € [a, b. (1.26)

a

Then J} is called the Riemann-Liouville fractional integral operator of order n.

This generalization of Lemma 1.2.2 appears naturally, considering the fact thatI'(n) =
(n—1)\
Since lin})Jff(x) = f(x) we set JO := I, where I is the identity operator.
n—
We will now present an important property, that will allow the definition of fractional
derivatives of the Riemann-Liouville and Caputo type.

Theorem 1.2.3 Let o, B € [0,00) and f € L1]a, b], then,
JOIf =Tt f (1.27)

holds almost everywhere on [a, b]. Note that if f € Cla, bl or a + 3 > 1 this identity holds

everywhere on [a, b]. An important consequence of this results is the commutative property

JEILf=J0Tsf (1.28)

1.2.3 'The Different Definitions of Fractional Derivative
1.2.3.1 Riemann-Liouville Fractional Derivative

It was shown before how the definition of the Riemann-Liouville fractional integral could
be obtained from Lemma 1.2.2 and the preperties of the I' function. Now, in order to
obtain a proper definition for the Riemann-Liouville fractional derivative we will make use
of a generalization of Lemma 1.2.3 (stating that for m > n (integers) and f € C"[a, b],
Drf =DmJr"f).

The case when n is not an integer does not pose any problem since the integral can
be easily evaluated through Eq. 1.26. The main difference is that the derivative on the
left-hand-side (D" f) may now depend on the constant a (D[ f) and therefore we have the
following theorem:

Theorem 1.2.4 Let o € Ry andm € N withm > «, then

D% = D" (1.29)

By looking at the Fundamental Theorem of Calculus, it is obvious why in the case
m, n € N the derivative does not depend on a.

We still have another problem, that is, what value should we use for m. Note that the
only restriction is m > «a. A possible solution is to assume that m is the smallest integer
that is bigger than .
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Definition 1.2.10 Riemann-Liouville Fractional Derivative: Let o € Ry and m = [a].
The Riemann-Liouville fractional derivative of order a |, BDef)is given by

D2 f(z) = DI f(z) = Dm) / (z — ™= f(t)dt. (1.30)

Forn = 0 we have BDY := I.

The following Lemma provides a useful way to calculate the Riemann-Liouville frac-
tional derivative.
Lemma 1.2.5 Assume that f € Al([a, b)) and that 0 < o < 1, then ED2 f () exists almost
everywbere in [a, b], ED2 f € L,([a, b]) (1 <p < 1/a) and

+ /(x —t)"f(t)dt | . (1.31)

a

1 f(a)
Ni—a) \ (z—a)

e D3 f(x) =

In order to gain some insight into this fractional derivative let us assume that f(z) = 1

is a constant function and that @ = 0 and o = 1/2. Then, using Eq. 1.31 we instanta-
H R 0.5 — 1 ..

neously obtain the result "Dy f((x) = OOV We would expect the derivative to be

zero (assuming the generalized derivative follows our common sense on derivatives).

Another important thing on Riemann-Liouville fractional derivatives is the fact that the
initial conditions for a fractional differential equation are given by fractional order deriva-
tives. For example, if we are solving a problem (single term fractional differential equations)
with velocity, the use of the Riemann-Liouville derivative operator forces these initial con-
ditions to be non integer order derivatives, making it difficult to perform a physical inter-
pretation (for example, aceleration is the first derivative of velocity)

In order to better understand this idea, we will now provide an example. The Laplace
transform is given by:

Definition 1.2.11 Laplace Transform: The Laplace transform of a function f(t), defined for
all real numberst > 0, is the function F(s) (a unilateral transform) defined by
oo
F(s) = / f(t)e stdt, (1.32)
0

where s is a complex number.

It is often used to solve applied problems involving fractional derivatives. The Laplace trans-
form of the Riemann-Liouville fractional derivative is given by:

©0 m—1
/ (DL f(t)}e tdt = s“F(s) — Y [ORDg—k—l f(t)LiO, m-1<a<m (133)
0 k=0 B

and therefore, we need to provide [[!DS~F~1 f(1)] +—o» Which, based on our common sense,
is difficult to do.

A solution to these problems seems to be the fractional derivative definition proposed by
M. Caputo (as presented next).

13
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1.2.3.2 Caputo Fractional Derivative

Definition 1.2.12 Caputo Fractional Derivative: Let o € Ry, m = [a] and D™ f(t) €
Li([a, b]). The Caputo fractional derivative of order o ($ D' ) is given by

x

1 m—a—1 mym
| / (x— O™ LDmEdE (1.34)

<Dy f(x) = J D" f(x) = Tm—a)

a

Note the resemblance with the Riemann-Liouville fractional derivative. The difference
is that we have exchanged the order of integration and differentiation. The following theo-
rem establishes the relationship between the two definitions.

Theorem 1.2.5 Ler o € Ry, m = [a] and f € A™([a, b)) the following relationship is

verified almost everywhere
¢ D3 f(x) = dDL[f(x) = Tna[f (@), a]] (1.35)

Tn—11f (), a] is the Taylor expansion of f centered at a,

m—1 (k) a
Tona[f(x),a] = > / ;a( )(m —a)*. (1.36)
k=0

Note that we now have that the Caputo fractional derivative of a constant is zero. This
happens because in this case we first perform a differentiation. Also, the Laplace transform
of the Caputo fractional derivative is given by:

o0 m—1
/ (BD3f(t)}etdt = °F(s) = 3 p* L i), m—1<a<m  (137)
5 k=0

and therefore, the initial conditions are classical derivatives (it becomes easier to assign
physical boundary conditions).

1.2.3.3 Griinwald—Letnikov

Another important definition is the one provided by Griinwald and Letnikov. It is well
known that a classical derivative can be approximated as a limit of difference quotients. For
example,

F(t) = DLf() = lim 2O =0

h0 h (1.38)

We know that:
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Vif(t) = f(t)— f(t—h)
Viaf(t)= Vipf(t)—=Vipf(t—nh)=f(t)—2f(t—h)+ f(t+2h)
: : (1.39)
VIS = Sino-1F () ) e
Therefore, we can state the following:
Theorem 1.2.6 Letn € N, f € C"([a, b]) anda < t < b, then:
D f(t) = lim %j; ®) (1.40)

Grinwald and Letnikov, performed a generalization of this result to non-integer n val-
ues, leading to the following definitions of fractional derivative:

Definition 1.2.13 Lezr o € Ry, f(t) € C1*1([a, b]) and h$; = (t — a)/N. The Grinwald-
Letnikov fractional derivative of order o (G* D f) is given by

Vi /(@)

o "Dff(x) = lim —22 (1.41)
—00 N
with
Vi = TEo-vr((§ ) s (1.42)
Note that
a ) Ma+1)
< k ) TTht ) a—k+1) (1.43)

1.2.3.4 Conclusions

We have resumed the basic theory that allows the understanding of fractional derivatives.
We also presented the definitions of fractional derivatives of Riemann-Liouville and Ca-
puto (the two definitions that are most widely used). The Griinwald-Letnikov fractional
derivative is also presented due to its straight relationship with the common finite differ-
ence approximation of the classical derivatives. Several definitions for fractional derivatives
and integrals can be found in the literature, for more on this please consult [61]. Since the
Caputo fractional derivative is the one that is often used to model real world phenomena,
only this definition will be considered along the thesis.

As it happens with classical derivatives, fractional derivatives also find application in
modeling real world phenomena. Therefore, in the next Section we establish a relationship
between fractional derivatives and the diffusion process (the spreading of something more
widely), providing in this way a realistic sense of application of such operators. The reason
for choosing this physical process lies on the fact that several works can be found in the
literature on this topic, and, this is one of the most common transport phenomenon found
in our daily lives (oxygen in the lungs diffuses from the alveolar air space into the blood
circulating around the lungs; a mug getting hot when a hot liquid is placed in it; perfume
diffuses into the air; diffusion of people into other countries, etc).

15



I.

INTRODUCTION

16

1.3 Time Fractional Diffusion Equations

1.3.1 Introduction

In this Section we present the basic theory on normal and anomalous diffusion. We start
by presenting in an axiomatic way the physical process and we finish with a relationship
between fractional operators and anomalous diffusion.

1.3.2 Normal Diffusion

Definition 1.3.1 Diffusion can be seen as a transport phenomena where distribution, mixing or
transport of mass/particles occurs without requiring bulk motion (the spreading of something more
widely).

! ! )) ' Time (t)

F1GURE 1.9: Schematic of the diffusion of small particles of ink in water.

By looking at figure 1.9 we see that the particles of ink that were all gathered at one

location (¢t = 0), just spread out (in latin diffundere means to spread out) or diffused through
all the domain (note that is just a schematic to help understanding the concept of diffusion
and not a real life experiment).
'The way these particles diffuse in water was an intriguing mystery for a long period of time.
In 1827, the botanist Robert Brown observed the jittering (small quick jumpy movements)
movement of small particles such as pollen grains, when these were immersed in water (fig-
ure 1.11- see also the following video: https://www.youtube.com/watch?v=R5t-0A796t0).

Robert Brown was a Scottish botanist and palaeobotanist who
made important contributions to botany largely through his pio-
neering use of the microscope. His discovery of Brownian motion
while examining grains of pollen of the plant Clarkia pulchella
suspended in water under a microscop, was denied in a brief paper
in 1991. Shortly thereafter, in an illustrated presentation, British
microscopist Brian J. Ford showed that Brown’s original micro-

scope could indeed show Brownian motion.

FIGURE 1.10: Robert
Brown
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Nowadays it is well known that this motion (jittery movement) is caused by the rapid move-
ment of water molecules colliding with the pollen grains and insight into this problem was
provided by Albert Einstein in 1905, in his work regarding Brownian motion, entitled “On
the motion, required by the molecular-kinetic theory of heat, of particles suspended in fluids
atrest” [62]. His work served as a definitive confirmation that atoms and molecules actually
exist (it is worth mentioning that Louis Bachelier, a student of Henri Poincaré, developed a
theory of Brownian motion in his 1900 thesis [63] regarding stock market fluctuation [64]).

Water = < o (4] Schematic of the collision
) nfwafgl:_n}olecules e
e é 0@ 9 d, \
S * 3 °f .00. Q‘ — gp o
© ¢ @Polengd . O, ° i‘ O %
© 00 ¢ ° Grains J A q. o L. °
O 00 % Qb Q0% [eee ok R S
@9 o @ 3 S
9 o 0o = ° o - < .
e 5 [~ <) *) =S N
Q (=) ® D oa o ,/ S - _ ] .
Q 0 o4 e 9 , <lum=1x10"m
2 2.9 - \ B d,, <Inm=1x10"m

Ficure 1.11: Pollen grains in water. The inset shows water molecules (black dots) colliding
into a pollen grain. This collision promotes the jittering movement of the pollen grains.

There are two ways to introduce the notion of diffusion: either a phenomenological
approach starting with Fick’s laws of diffusion (Fick set up the diffusion equation in 1855
[65]) where the diffusion flux is proportional to the negative gradient of concentrations (it
goes from regions of higher concentration to regions of lower concentration), or a physical
and atomistic one, by considering the random walk (Brownian motion) of the diffusing

particles.

The random walk theory was popularized by Karl Pearson in his letter to Nature (1905)
[66], where he proposed the following problem: a man starts from a point O and walks {
yards in a straight line; after this step he turns through a random angle and takes another
step of length [ (see figure 1.12). He repeats this process n times. What is the probability
that after n steps he is at a distance between r and r 4 dr from the original point O? This
problem is basically the idea behind Brownian motion.
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Perrin could observe and record the Brownian motion
of a suspended gamboge particle in a liquid of a given
viscosity and constant temperature.

(b)

Ficure 1.12: (a) Example of a Random Walk. (b) Experimental verification of Brownian
motion for three particles of gambooge (these results were obtained by Jean Perrin in 1909

[67] and gave him a Nobel Prize in 1926).

We will now derive the diffusion equation by considering the random walk of a single
ink particle. For that, we will need the following definitions and lemmas:

Definition 1.3.2 Random Variable: A random variable X : Q0 — E is a measurable function
Jfrom a set of possible outcomes () to a measurable space I. ) is a probability space. Usually X is
real-valued (i.e. E =R ).

Definition 1.3.3 Expected Value: Let X be a discrete random variable taking values x1, xa, ...
with probabilities p1, pa, ... respectively. Then the expected value of this random variable is the
infinite sum B[ X ] = Z;’il x; p; provided that this series converges absolutely. If this series does
not converge absolutely, we say that the expected value of X does not exist.

If the probability distribution of X admits a probability density function f(x) then the ex-
pected value can be computed as E[X]| = [*_xf(x)dx.

Definition 1.3.4 Random wvariables are identically distributed if they have the same probability
law. They are i.i.d. (independent and identically distributed) if they are also independent.

Definition 1.3.5 Variance and Covariance: The variance (Var) of a random wvariable X
with expected value B(X) = px is defined as Var(X) = E ((X — px)?) (ke square root
of the variance of a random variable is called its standard deviation). The covariance between

random variable Y and Z, with expected values jvy and i, is defined as cov(Y, Z) = E((Y —
py)(Z = piz))

Let us derive the diffusion equation by first considering the diffusion of only one particle

of ink.

Lemma1.3.1 If X and Y are independent random wariables, then E(XY) = E(X)E(Y)
andVar(X +Y) =Var(X)+ Var(Y). If X1, Xo, ..., X, are i.i.d., each with mean ji and
variance 02, then B(X1 + - - - + X)) = np, Var(X1 + - - - + X,,) = no?

Proof 1.3.1 The proof of this lemma is straightforward.
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In order to derive the diffusion equation, lets first consider the diffusion of only one
particle of ink (we will follow the exposition by Cai 2011 [68]).

ZA

2H ?—Q

()< T 27 3r T SZ'E 67 t|=me
z(n7) 6

Ficure 1.13: Random walk of a single particle.

Lemma 1.3.2 Random Movement: Let z(t) be the position of one particle of ink (2(0) = 0).
At each constant time step T; (i = 1,2, ...) the particle can only move/jump to the left or to the
right (with the same probability), by a distance of | (see figure 1.13):

[ 2(t)+1 prob.=1/2
Ht+7) = { z(t) —1 prob.=1/2 (144)
Therefore we can define the random variable
[+l prob.=1/2
li= { —l  prob.=1/2 (1.45)

Since the particles have no memory (the previous step will not affect the next step), the random
variables l; are independent and identically distributed (iid).

Based on this, we have that the average position and the variance of the particle at t = nt
are E(2(t)) = 0 and Var(z(t)) = nl?, respectively.

Proof 1.3.2 The position of the particle att = nt is given by 2(t) = 2(0) + L1 + ... + 1, =
>k Uk Therefore, based on the previous Lemma (lemma 1.3.1) we have that (D" _ ly) =
nu with p = E(l;) = (—i—l)% + (—l)% = 0. This means that the average position E(z(t)) =<
2(t) >= 0 (in average, the particle is always in the same place). The notation < . > is also very
common.

We know that Var(z(t)) = Var(3Xj_1 ) = E((Cpei e —EQCpy k))?). Since
E(> i 1 k) = 0, we have:

Var(zt)) =E (XCie1)?) = E((h+ ..+ L)+ ..+ 1n))

(B + o+l + Xl )

Wiy + ..+ loly) + E (Ziyéj li1j>
1)+ +E(5) + 2 Elil)).

E
E
E (1.46)
E

(
(

We know that
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[ (+D)*  prob.=1/2
li = { (=0)2  prob. =1/2 (1.47)

and that E (12) = (+1)%3 + (=1)23 = 12 and that E(L;1;) can be written has E(L;)E(1;) = 0
(L; is independent of ;). Therefore we conclude the following:

Var(z(t)) = E ((XCh; lk)?) =< 2(t)* >=nl? (1.48)

Remark: This result can be generalized for more particles, and the diffusion equation
can be derived in a simple way.

For that, consider that we have an enormous amount of ink particles (continuum hy-
pothesis), in such a way that the density of particles at a point z can be given by the density
function (C'(z)) define by

C(2) = lim Mzt (1.49)

with N[, . 4. the number of particles in the interval |2, z + dz]. Note that we assume that
even in a small interval [z, 2 + dz] the number of particles is very large, N[, ., 4.] > 1, and
therefore C'(z) can be considered to be smooth. Also, for dz — 0 we have a < dzx.

These are the mathematical assumptions required to derive this continuum random walk.
In reality (or numerical simulations), dz will never go to 0 and we allways need to define
what means small enough. For example, if we consider that the ink has a similar compo-
sition of water, we have that 1em? of water has mass 0.997¢, the molar mass of water is
18.02g/mol and therefore 18.02¢ contains 6.022 x 10?3 molecules. This leads to: 0.997¢
of water (1em?) contains 3.33 x 10?2 molecules, a good approximation to a continuum.

Next we derive the diffusion equation by considering a simple 1D discrete case. But
before we present the definition of number density:

Definition 1.3.6 Number Density: Number density is a useful concept for thinking about macro-
scopic samples in a microscopic way. Number density can be thought of as the number of particles
in a particular volume.

Lemma 1.3.3 Assume that we managed somehow to obtain the discrete number of particles Ny,
N1, Ny at a particular location 2o, 21,23, respectively (as shown in figure 1.14). A good approx-

imation for C(z) = dhm 2t gy 205 O(z) = <Nf’> (this is the number density). Note
z—0

that we use the average < N; > and not the N; because the number of particles is evolving in
time at each particular position in space (the ink particles are all performing a random walk). If
we consider two distinct time steps/jumps, the step (n — 1) and the step nT, then we have that
the equation governing the evolution of the number density at location z1 is given by,

aC(Zl) _ D82C(2’1)

T 922 (1.50)

with D the diffusion coefficient.
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Proof 1.3.3 We know that particles will allways jump a distance £, and therefore, the particles
that are at z1at instant (n— 1)T will all jump to a different location (2o or zo) whent = nt (see
Srgure 1.14). We can say that the number of particles at location z1 whent = nt is < N{'™ >,
and we also know that these particles came from 20 and z3. In average, /yaﬁ of the particles go to
the left and the other half goes to the right, therefore:

1 _ 1 _
<N >=3 < N> +5 < NS (1.51)

We are now in position to calculate the derivative in time of C(z1), that is,

NIT <N("*1)T
OC() _ = = (1.52)
ot T '

Making use of Eq. 1.51 and the fact that zo = z1 — | and zo = z1 + | we have that

% = % [< Nénfl)r S 1< Nz(n—l)r S 9« Nl(nfl)_r >}
= 5 [C(20) + C(z2) — 2C(21)] .
= 5 [C(z1+1) —2C(21) + C(z1 — )]

E [Clr+)=2C()+C (=)
2T 1

For really small jumps we can say that:

80(21) - ﬁc‘)QC(zl)
ot 2r 0x2

(1.54)

Note that we could have taken the limit | — 0 and stated a certain relationship between |

2 . . . .
and T so that é—T becomes a constant (the relationship between | and T would involve a certain
characteristic velocity of the particles).

Finally, we can say that
0C(z1) 0?C(z1)

St =D (1.55)

withD = % known as the diffusion coefficient. For a more detailed proof please see the article by
Einstein [62].

Remark: In the previous proof, we could have taken the limit / — 0 and 7 — 0, while
in reality 7 and [ are finite. 'This is possible because the differential equation represents a
macroscopic view of the microscopic phenomenon with 7 < T'and [ < L, where T'and L
are the time of observation and the dimension of the experiment, respectively.
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Ficure 1.14: Particle jump.

The following Lemma will allow a better understanding of the diffusion equation and
the diffusion coefhicient.
Lemma 1.3.4 Consider the diffusion equation 6C(x t — Dazc(g’t) with D constant. Assume
we have an infinite domain —o0 < x < +00 free of substance. For example, water with no
ink. At the initial instant t = 0 we inject a portion of ink that is given by C(x,0) = M(x)
with M the total amount of ink (M f+oo (z,t)dz Vt) and 0(z) the Dirac Delta function
(6(x) =0forx =0, 6(x) = +00 at x = 0, and the area under the infinitely tall and infinitely
narrow peak is unity). Since that domain is infinite we consider the boundary conditions (the
portion of ink will take an infinite time to reach the infinitely far ends of the domain)

lim C(z,t) =0 (1.56)

r—+o0

Then, the solution to the diffusion equation is given by,

C(x,t) = \/%exp <—f—;t) . (1.57)

Proof1.3.4 See for example, John Crank - The Mathematics of Diffusion [69].

Note the resemblance between the solution obtained and the probability density of the
normal distribution given in the following definition:

Definition 1.3.7 In probability theory, the normal (or Gaussian) distribution is a very common
continuous probability distribution. The probability density function, f(.), is

f(2) = S exp (15557 (1.58)

with 02 the variance and | the mean or expectation of the distribution.

The normal diffusion was verified experimentally for example in the works of Kappler
in 1931 [70], where he experimentally verifies a Gaussian distribution.

We can say that C'(x,t) gives the amount of ink, M, multiplied by the probability of
finding ink in the different regions of the domain, along time (basically we have the amount
of ink in the different regions of the domain - see figure 1.15). Att = 0 it is most likely
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to find ink only at the origin with a high concentration, and, for large times, the ink has
spread and it is probable to find ink in a// the domain (the domain is infinite) but with lower
concentrations.

Note that by comparing Eqs. 1.57 and 1.58 we observe that the variance is given by:
Var(C(z,t)) = 2Dt. 'This is what characterizes the normal diffusion. Particles move
randomly with a variance that is proportional to time. This is a macroscopic observation (a
scale) of the random movement of tiny particles.
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Ficure 1.15: Evolution of the concentration of ink in time (seconds), for different diffusion
coefficients.

Going back to the random walk, remember that the position of a particle at £ = nr7 is
given by z(t) = 2(0) + 11 + ... + I, = > li. Assume that 2(0) may not be 0. Then we
have:

Z(t = Z(O) +hHh+..+1l,= ZZ:I Iy
& E(2(t) —2(0)) = E(3 51 k) (1.59)
) —2(0)) =

This means that if we shift our system by z(0) the expected value (mean position of the
particle) is zero (the particle goes nowhere). If we calculate the Mean Square Displacement
E((z(t) — 2(0))?) or < (2(t) — 2(0))? >, we have that,

E((2(t) = 2(0))*) = E 2(22:1 Ik)?)
= lez
— 2Dt

(1.60)

This means that the Mean Square Displacement of a particle is proportional to time (as seen
before for the continuous case). Note that for this case, where the probability the particle

will jump +1 or —[ is the same, we have that z(0) = p and therefore the Mean Square
Displacement can be interpreted as the variance. When we have discrete experimental data,
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or discrete data from numerical simulations with particles, the Mean Square Displacement
is usually measured by,

1 N
7 2 (1) = 2(0))%, (1.61)
n=1

where N is the number of particles to be averaged, 2, (0) = 2 is the reference position of
each particle and z,(t) is the position of each particle at instant £.

Remark: It should be noted that the derivation showed here is not unique. For example, if
we consider a particle can still perform jumps 4/ or —[ and that the particles can also stay
in the same position, we can still arrive at the diffusion equation. A justification for this is
the Central Limit theorem:

Theorem 1.3.1 Central Limit Theorem: Let X1, Xo, ..., X,, be i.i.d. random variables, each
with mean | and variance 02, then Sy, = X1 4+ -+ + X, Jfollows a normal distribution with
mean . and variance no?, Jfor large n values.

'This means that no matter the distribution of the random variables is, their sum will
follow a normal distribution. This also makes normal diffusion to be more common than
anomalous diffusion.

Note that nothing was said about the units of D. If in Eq. 1.55, C represents the con-

centration with units [Tn—%l] with ¢ the time [s] and z is the position [m], then the diffusion

2
. . m
coefhicient D is given by [—g } .
Incorrect dimensions are often encountered in fractional calculus, because, when we

substitute (for example) the classical time derivative by its fractional counterpart, we alter
the dimensions of the equation, and the meaning of D changes (see next subsection).

1.3.3 Anomalous Diffusion

Normal diffusion is the usual case when systems are at equilibrium, and anomalous diffusion
occurs in more complex systems. A general relationship for all the different anomalous
diffusion processes is still something under development, and, fractional calculus seems to
be a good tool to fairly describe and understand some of these complex processes.

Although in nature we have several processes that follow a Gaussian distribution, there
are cases where this normal distribution does not apply, and therefore, more general theories
need to be derived.

Lets start with a simple example. Consider a free particle that travels with constant
velocity v (undergoes no collisions and experiences no friction forces). The trajectory/lo-
cation of the particle is given by z(t) = vt and if we use Eq. 1.67 to compute the Mean
Square Displacement (MSD), that from now on is represented by < (z(t))? >, we have
that < (z(t))? >~ t? (see Lemma 1.3.5). Therefore we say this process is superdiffu-
sive (the exponent is bigger than 1 - figure 1.16). That are also experiments revealing that
< (2(1))? >~ 12, < (2())? >~ t'/* (subdiffusion - the exponent is smaller than 1 -
figure 1.16) or that the MSD changes with time (see for example the work of Coupier et al.
[71]).
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Subdiffusion Superdiffusion
<(Z(I))Z >/t -0 <(Z(t))2>/t L
' ! V1 L X
Normal Diffusion Ballistic
Diffusion

((zV)*)/t>c>0

Ficure 1.16: Subdiffusion, normal diffusion and superdiffusion.

This means that diffusion is a complex process, and a more generalized theory is needed.
An example of anomalous diffusion is shown in figure 1.17. Note that the particle makes

long jumps that are followed by a normal diffusion.

Anomalous Diffusion of a Particle

Fiure 1.17: Anomalous diffusion of a particle.

Lemma 1.3.5 A Not so Random Movement of a Free Particle: Let z(t) be the position of one
particle of ink (2(0) = 0). At each constant time step 7; (i = 1,2,...) the particle can only
move/jump to the right by a distance of l:

2(t)+1l=2(t+71)= prob.=1. (1.62)

77Jemfore we can define the random variable
l; = +1 prob. = 1. (1.63)

Since the particles have no memory (the previous step will not affect the next step), the random

variables l; are independent and identically distributed (iid).
Based on this, we have that the Mean Square Displacement is given by:
(1.64)

E((=(1) - 2(0))?) =< (2(t) = 2(0))? >= 5¢* ,

meaning that this free particle shows a variance that is proportional fo 2.
=20)+h + ...+ 1y

Proof 1.3.5 The position of the particle att = nt is given by z(t)
> py Uk Therefore, we have that (D"} _ ) = nl .

since
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2t) =200+ b+ ...+l =>0 1 lk (1.65)

we have that

E((2(t) = 2(0))*) = E (=1 &)%)
= E((lh+..+L)lL+...+1n)
= E{hl+ ...+ i, il
(211+ + 24‘2175] j> (1.66)
= E (ll) +. +E (ln) + Zi;éj E(lilj)
= nl*+ (n* —n)?
ﬁt2
T2
We will now tackle the case when anomalous diffusion is observed, that is,
< (2(1)? >~ t® (1.67)

with a > 0 (a # 1), but, it does not change with time (« is constant).

In order to justify the need of fractional calculus we will briefly describe a situation
where the use of a fractional derivative in time (instead of the classical derivative) leads to
anomalous diffusion, that is, < (z(t))? >~ t°.

Lemma 1.3.6 Consider the fractional subdiffusion equation given by

0°C(x,t) D 0%C(z,1t)
ot Y 9x?

,0<a<l,zeR t>0 (1.68)

with Dy constant. Assume we have an infinite domain —oo < x < 400 free of substance. At
the initial instant t = O consider that C(x,0) = §(x). Also, consider the boundary conditions:

lim C(z,t) = 0. (1.69)

T—=400

The Mean Square Displacement is then given by:

< (2(1))? >= iRyt (1.70)

Proof 1.3.6 See for example the work by R. Metzler and J. Klafter [72].

It is now clear that fractional calculus can be used to analyze anomalous diffusion. Al-
though, one can not generalize this previous result, and say that fractional calculus will solve
all anomalous diffusion problems. The time-fractional diffusion equation comes from a gen-
eralized Random Walk/Brownian Motion (the Continuous Time Random Walk (CTRW)
model), where a particle can perform arbitrary jumps, and can wait before performing a
jump (with varying waiting time). This variety of jumps and waiting times is complex, and
to go from the CTRW to a fractional differential equation a certain distribution for the
waiting time and jump length was assumed. A different choice of waiting time and jump
length would not allow to write all the microscopic information in the compact form of
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the fractional operator. Therefore, in the future, new and more general operators need to be
derived, so that particular types of diffusion can be easily modeled by such general operators.

While these new operators are not derived, we must take advantage of the tools that we
have at the present time, and therefore, we must study in detail fractional operators, such as
the Caputo fractional derivative.

As seen before, the anomalous diffusion equation allows modelling both subdiffusive
and superdiffusive processes. Examples of subdiffusive processes are, for example, the diffu-
sion of proteins across cell membranes, diffusion of contaminants in groundwater, transient
photocurrent in amorphous thin films that form the core of photocopier machines, etc, and,
examples of supperdiffusive processes are, the flight of albatrosses, the movement of bacte-
ria, etc. Due to the high number of such anomalous processes in our daily lives, we may
quote Klafter and Sokolov [73] and say that "anomalous is normal!”.

Due to the high number of publications on the subject, and the diversity of anomalous
processes, in this work we had to choose/focus on only one type of diffusion. Therefore, we
will only address the subdiftusive processes, where o < 1 in Eq. 1.70.

Finally, it should be remarked that we may find experimentally subdiffusive Mean Square
Displacements that do not scale with ¢*, or show more that one scale, therefore, in this cases
we also need to find a different time derivative operator (something that can give us a good
macroscopic view of what is happening in the microscopic world).

These more complex phenomena will require the use of more advanced fractional tools,
such as, for example, the distributed order operators, which are a continuous weighted sum
of fractional derivatives. This topic will be addressed with detail in Chapter 3.

1.4 Motivation, Aim and Objectives

Due to the huge number of papers being published everyday on the subject of fractional cal-
culus, the task of finding a subtopic to further develop and explore was not an easy task. The
initial objective was to establish a bridge between Engineering and Fractional Calculus, by
presenting an axiomatic definition of the physical processes under study and by developing
new and more sophisticated numerical methods that allow the solution of the fractional dif-
ferential equations involved. After along and exhaustive literature review it was realized that
most papers on anomalous diffusion either consider a constant diffusion coeflicient D or the
diffusion term D(z) ‘3273 (which may lead to the wrong modeling of diffusion), instead of the
correct diffusion term %(D(a:)%). This motivated us to develop a new numerical method
for the solution of the Time-Fractional Diffusion Equation with varying diffusion coeffi-
cient and a diffusion term given by %(D(z)%). Also, we considered Neumann boundary
conditions and proved the solvability, stability and convergence of the method (most works
only consider Dirichlet boundary conditions). We then used the new numerical method to
study the diffusion of temperature in human tissue.

After getting familiarized with fractional differential equations and numerical methods
for their solution, it was realized that although these equations have a huge potential in mod-
eling physical phenomena, they present two major drawbacks that were poorly addressed in
the literature. These are: (I) the potential singularities of the solution and (II) the fact the
numerical solution of such equations is highly demanding in terms of computational time.

27



I.

INTRODUCTION

28

(I) few papers can be found in the literature addressing the singularity issues, and they can
be categorized into four different approaches [74]: the use of refined meshes near the singu-
larity, increasing in this way the order of convergence [75; 76; 77; 78; 79]; approximate the
solution by nonpolynomials, capturing the potential solution behavior near the singularity
[80; 81; 82; 83; 84; 85; 86; 87; 88]; Separate the solution into two parts: smooth and nons-
mooth parts and force the time discretisation scheme to hold exactly for the nonsmooth part
[89; 90; 91]; introduce a Correction to the starting steps of the time discretisation schemes
in order to capture the singularity of the solution [92; 93; 94; 95; 96; 97]. It should be
remarked that these works are related with the fractional differential equation of the form
D*(t)u(t) + Au(t) = f(t), 0 < t < T with u(0) = up. Due to the importance of
this subject, it became the primary objective of this work, that is: 70 obtain reliable numerical
methods that can deal with the potential singularity of solutions of fractional differential equations,
including the Time-Fractional Diffusion Equation.

(II) The highly demanding computational effort needed to solve fractional differential equa-
tions (due to the non-local properties of these operators) has been poorly addressed in the
literature, being finite differences the most common methods used for the numerical solu-
tion of fractional differential equations. In order to solve this issue we proposed a new nu-
merical method based on the approximation of the solution by Chebyshev polynomials. The
numerical method is tested on Distributed-Order differential equations, enhancing in this
way the need for fast computations (since these distributed order operators are a continuous
weighted sum of fractional derivatives). It should be remarked that Chebyshev polynomials
were already presented in the literature for solving similar problems [98], but, a proof of
convergence of the method could not be found, and therefore it was difficult to infer the
fastness of the method and its robustness when in the presence of singular solutions. There-
fore we derived the full convergence analysis of the numerical method, assuming the same
regularity assumptions often encountered in finite differences methods. We concluded that
this method is much faster when compared to traditional finite differences.

Since the regularity assumptions often used in finite differences and other methods poses
limitations in the applicability of the method, we developed a new numerical method that
does note pose any restriction in the solution. Based on a previous work by the group
[83], we developed a numerical method for the solution of the Time-Fractional Diffusion
Equation based on a nonpolynomial approximation of the solution. This method proved
to be robust and independent of the order of the fractional derivative. The main issue of
the method was that the computational effort was still high. Therefore, we developed a
new hybrid numerical method that uses only a nonpolynomial approximation in the first
discretized time interval (including the potential singular point, the origin in time), and,
for the remaining intervals a polynomial approximation was used. The method was first
tested in systems of fractional differential equations, and was later generalized to the Time-
Fractional Diffusion Equation (using the method of lines to transform the equation into a
system of fractional differential equations). We perform numerical tests and show that the
method allows high convergence orders.

1.5 Structure of the Thesis

Chapter 1 In Chapter 1 we present the brief history of fractional calculus together with the
mathematical preliminaries that are needed for this thesis to become self contained.
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We then describe the basic functions of fractional calculus, and, we also discuss the
different definitions of fractional derivatives. We present an axiomatic description of
the physical phenomenon of anomalous diffusion and we discuss the application of
fractional calculus in the modeling of such complex process.

Chapter 2 'This chapter is dedicated to the Time-Fractional Diffusion Equation. We start
by presenting the existence and uniqueness results of solutions to such equations;
we derived a numerical method based on finite differences for the solution of this
equation with space varying diffusion coeflicient and Neumann boundary conditions,
prove its convergence and stability, and show an application of this fractional model
in describing the diffusion of temperature in human tissue. The typical substitution
of a classical derivative by its fractional counterpart is discussed in light of the physics
involved.

Chapter 3 We derive a numerical method (based on the approximation of the solutions with
Chebyshev polynomials) for the solution of the distributed order fractional diffusion
equation, with the aim of improving the speed of the computations. This type of
equations allow the modeling of strong subdiffusive processes encountered in nature.
We present a detailed analysis of the convergence of the method and compare the
method with a classical finite difference approach in terms of speed-up.

Chapter 4 A numerical method for the solution of the systems of fractional ordinary dif-
ferential equations and the Time-Fractional diffusion equation is presented, and, the
convergence of the method is studied numerically. The numerical method is based on
the method of lines (for the Time-Fractional diffusion equation) and the convergence
order is independent of the order of the fractional derivative. The solution is viewed
as a sum of non-polynomial functions. Based on the results obtained for the non-
polynomial method, and with the aim of improving the speed-up of the numerical
method, we also develop a new and more robust hybrid method that is much faster,
can deal with the non regularity of the solutions, and, at the same time allows one to
choose the degree of accuracy.

Chapter 5 In this Chapter we present the main conclusions and a discussion of the work
developed.
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Finite Difference Schemes: A Numerical Method for
the Time-Fractional Diffusion Equation with Space
Varying Diffusion Coefhicient and Neumann boundary
Conditions 2

2.1 Introduction

The Time-Fractional Diffusion Equation has been found in a broad variety of engineering,
biological and physics processes where anomalous diffusion occurs (see previous chapter).
This equation takes into account both subdiffusion and supperdiffusion, 0 < v < 2, and is
given by (1D)

le' 2

%:Da% reR, t>0 (2.1)
where D, stands for a general diffusion coefficient with dimensions [length]® / [time]®.
It was studied by a number of authors since the 1980s: see, for example, Wyss (1986) [99],
Nigmatullin (1986) [100], Schneider and Wyss (1989) [101], Mainardi (1995, 1996) [102;
103], Nigmatullin (2006) [104], Angulo et al. (2000) [105]. Other relevant works are:
[106; 107; 72; 108; 109; 110; 111; 112; 113; 114; 115; 116; 117; 64; 118; 119; 120; 121].

Since the analytical solution of the fractional diffusion equation is known only for simple
initial and boundary conditions [122; 123; 124], the ability to generate a numerical solution
is crucial in real world applications. However, the computation of the numerical solution of
fractional differential equations is not an easy task, mainly due to the nonlocal property of
the fractional differential operator, since, by definition, the solution at a certain time depends
on the solution at all earlier times. As a consequence, the full solution trajectory has to be
stored in order to compute the solution at the current time level, resulting generally in very
expensive computational methods. It is then very important to use reasonably high-order
schemes for the time and space discretisation.

Finite difference methods seem to be the most popular for the numerical solution of
time-fractional diffusion equations (see for example [125; 126; 127; 128; 129; 130; 131; 132;
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78; 133]) although other numerical approaches have also appeared, such as, for example,
finite element methods [134; 135], meshless collocation methods [136] and collocation
spectral methods [137].

However, there is a lack of numerical methods for the solution of time fractional dif-
tusion equations with Neumann boundary conditions and a space varying diffusion coeffi-
cient (following a standard ‘Fickian’ transport equation). For example, we have the work
of Damor et al. [138] where they presented a method for the numerical solution of such
equations (without a space varying diffusion coeflicient). They do not provide any proof of
convergence and stability of their method, and, they use a first order approximation for the
discretisation of the Neumann boundary conditions. Another interesting work is the study
proposed by Karatay et al. [139] where they present a new numerical scheme, based on the
Crank-Nicholson method, for the solution of the time fractional heat equation.

Most of the works also usually consider the diffusion coeflicient outside of the derivative

operator Da(m)% while it should be % (DJ&:)%) A good discussion on this
subject is provided in the work of B. Milligen et al. [140] entitled On the applicability of

Fick’s law to diffusion in inbomogeneous systems.

Finite difference approximations for derivatives were already
known by Euler in 1768 (1D case) and were possibly extended
to 2D by C. Runge in 1908. However, the true emphasis on
the use of finite differences to solve PDE’s was given in the fun-
damental paper by Courant, Friedrichs and Lewy (1928) on the
solution of problems of by means of finite differences. Richard

Courant (1888 — 1972) was a German American mathematician.
Kurt Otto Friedrichs (1901 - 1982) was also a noted German
F1GURrE 2.1:  Courant, American mathematician and the co-founder of the Courant In-
Friedrichs, Lewy stitute at New York University. Hans Lewy (1904 — 1988) was a

Jewish German born American mathematician.

Therefore, the motivation of this chapter is the development of a numerical method
based on finite differences for the solution of the fractional diffusion equation taking into
account Neumann boundary conditions and the fact that diffusivity may vary in space, and
also, to prove the convergence and stability of the method. The numerical method will
then be used study the diffusion of temperature in tissues (using the bioheat equation), and
also perform a critical analysis on the common procedure of substituting the classical time
derivative by its fractional counterpart.

Next we present some results on the existence and uniqueness of solutions for the Time-
Fractional Diftusion Equation, that are essential for developing the numerical solution.

2.2 Existence and Uniqueness of Solutions

Consider the generalized time-fractional diffusion equation given by (these results were
obtained from Luchko [141; 142; 143]),

Cpou(t) = div(p(z)grad(u)) — q(z)u + F(x,t), 0 < a < 1 (2.2)



2.2. Existence and Uniqueness of Solutions

where div and grad are usual divergent and gradient operators, (z,?) € 2 = G x (0,7,
G C R peCYG),qe C@G),px)>04gx)>0xeG. Alo,let S represent the
boundary of G.

Consider the initial-boundary-value problem

uli=0 = up(z), € G (2.3)
uls = v(x,t), (z,t) € .S x[0,T]. ’
Let us define the space W((0,T]) = {space of functions f € C1((0,T]) : f' €
L((0,T))}. A classical solution of this problem is a function u = u(x,t) defined in the
domain G x [0, 7] that belongs to the space C(G x [0,T]) N W((0,7]) N C2(G) and
satisfies both Eq. 2.2 and initial and boundary conditions 2.3
Note that if this problem possesses a classical solution, then the functions F', ug and v
given in the problem have to belong to the spaces C'(G x (0,T)) , C(G) and C(S x [0,T]),

respectively.

Theorem 2.2.1 Uniqueness of Solution: The initial-boundary-value problem (Egs. 2.2 and
2.3) possesses at most one classical solution. This solution continuously depends on the data given in
the problem in the sense that if | F' — FHC(E) <eg |jug —HOHC(@)S&), v =0l (sx0,77) < €15
andw and W are the classical solutions of Egs. 2.2 and 2.3 with the source functions F' and F, the
initial conditions ug and o, and the boundary conditions v and v, respectively, then the norm
estimate ||u — ﬂ“c(ﬁ) < max{eg,e1} + %&‘for the solutions u and 0 holds true.

Let M7, be the space of the functions f that satisfy X|g = 0, X € S and the inclusions
f € CHQNCHG), L(f) € L*(G).

Theorem 2.2.2 Existence of Solution: Let an open domain G be a one-dimensional interval
(0,1) and ug € My, . Then the classical solution of the initial boundary-value problem

uli=0 = u

o(xz), 0 <z <1
w(0,) = u(lt) =0, 0<t<T @4
Jor the generalized time-fractional diffusion equation
CDou(t) = % <p(:v)gz> —qr)u<a<l (2.5)

exists and is given by the Fourier series in the form u(x,t) = >_2° (ug, X;) Ea(—Ait®) X;(x),
with X; € My, © = 1,2,... being the eigenfunction corresponding to the eigenvalues \; of the
eigenvalue problem

L(X)= AX

X‘S: 0, Xes (26)

L(u) = — —— —
(L) = —p(@) 55 -5 | 5,
(see Introduction Section - Egq. 1.13).

2
07 _ 9p(x) (8u> +q(x)u), and, E,, being the Mittag-Leffler function
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A generalization of these results to more complex (Robin) boundary conditions was
obtained by Jukka Kemppainen [144]. We now summarize his main results and remarks.
Consider the generalized time fractional diffusion equation given by,

Cpou(x,t) = Au(z,t) + f(x,1), 0 < a < 1 (2.7)
with boundary and initial conditions,

8312(@? + Bz, t)u(x,t) = g(x,t) on B=T x (0,T]

- (2.8)
u|t:0 = UQ(CL‘), reG

where (z,t) € G x (0,T],G C R™, f, g, up(z) are any given functions, G C R", n > 2,
is a bounded domain with Lyapunov boundary T € C1*+ (0 < A < 1).

Theorem 2.2.3 Ler g € C(B), uo(x) € CH(G) and f € C(B) such that f(.,t) is Holder
continuous uniformly int € [0,T] and suppf(-,t) C G, t € [0,T). Then the timefractional
diffusion equation admits a unique classical solution and the solution depends continuously on the
data in the following sense:

lu(z, Olle@ < € (Ifle@ + l9llews) + ol @) (2.9)

In the same paper Kemppainen [144] presents the following remark:

Remark 3.7. The same technique as above may be used for more general time—fractional dif-
Jfusion equations, where A is replaced by a uniformly elliptic second-order differential operator in
nondivergence form with bounded continuous real-valued coefficients depending on T.

2.3 A Numerical Method for the Fractional Diffusion Equation
with Neumann Boundary Conditions and a Space Varying
Diffusion Coefhicient

2.3.1 Time-Fractional Diffusion Equation

Consider the fractional differential equation given by:

0T (x,t) 0 (k () OT (,t)

=45z ox

— BT T* L 1
5o 5 > (r,t)+C 0<t<T" 0<z<L, (2.10)

where g% is the fractional Caputo derivative of arbitrary real order « given by [48],
0°T (z,t) 1 t o 0T (z, )
S = T _a)/o (1 — )7 L0 g (2.11)

with 0 < @ < 1, and A, B and C' model parameters with suitable dimensions, so that the
equation becomes dimensionally consistent. Note that k () is a function of x, meaning

that we can deal with possible anisotropy. The reason for using the variable 7" is because
later this equation will be used to predict the diffusion of temperature.

Note that we are now using a more simple notation to represent the Caputo derivative.
'This is because from now on only the Caputo fractional derivative will be used.



2.3. A Numerical Method for the Fractional Diffusion Equation with Neumann Boundary
Conditions and a Space Varying Diffusion Coeflicient

2.3.2 Boundary Conditions

We assume Neumann boundary conditions (constant heat flux) given by:

oT (z,t) B
— k(x) 9e |, =qyp, t>0 (2.12)
OT (z,t) B
— k(x) or |, 0, t>0, (2.13)
and an initial condition,
T(x,0) =Ty, x€(0,L). (2.14)

This way we are considering that at z = 0 we have a constant heat flux, and that far
from that region, the zero temperature gradient applies (we consider 7" to be the tempera-
ture). Besides the Neumann boundary condition, we also consider an oscillatory flux at the
boundary, given by,

OT (x,t)

— k(x) o
x=0

= qocos (wt), t>0. (2.15)

where w is the heating frequency (one possible application of this type of boundary condi-
tions is the tumor treatment by alternate cooling and heating [145 ]?,

2.3.3 Numerical Solution

In order to obtain an approximate solution of Eq. (2.10), we need to approximate the time
and spatial derivatives. For that, we consider a uniform space mesh on the interval [0, L],
defined by the gridpoints ; = iAz, i =0,..., N, where Az = %, and we approximate
the space derivative by the second order finite difference (assuming 7' € C* with respect to

k:j'T(le,t) - (k?j_ + kz_) T(Q?i, t) + ki_T(l‘i,ht)
o= (Ax)?
+O((Az)?)

(2.16)

where k:;" =k (xz- + M) and k; =k (mi - M). For the discretisation of the fractional

2 2

time derivative we also assume a uniform mesh, with a time step At = T%/R and time
gridpoints t; = [At, l = 0, 1,..., R, and, we use the backward finite difference formula
provided by Diethelm [48] (assuming 7' € C? with respect to time),

l
0T (x,t —a o
8£o¢ ) = %‘?Qt)fa) ain,)l (T (l‘, tl—m) =T ((E, 0))
m=0

+O((At)*)

(2.17)
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where
1, m =0,
afs)l ={ m+D" =2 (m -, 0<m <,
’ (1—a)l~o— 1o 4 (1 — 1), m=1.

The coefficients ags )l are such that

ol <0, m=1,2..,1-1 2.18)
-1
Sd >0, 1=1,2,.... (2.19)
m=0

For a proof of these results see [146] and [147; 148]. These properties will be useful
when deriving the stability and convergence of the proposed method. Since the fractional
derivate is a nonlocal operator, an increase in the computational effort is expected. To
solve this problem, parallel algorithms can be used. The interested reader on the topic
of parallel computing of fractional derivatives may consult the work by Gong et al. [149]
where a parallel algorithm for the Riesz fractional reaction-diffusion equation is presented
and explained.

Denoting the approximate value of 7' (z;, ;) by T}, and k (z; & %) by ki and ne-
glecting the O((Az)?) and O((At)*™) terms, the finite difference scheme is then given

by,
o ! _ _
(At) 3 o) (T;—m _ TQ) _ Ak;r:%rl — (k7 + k) T+ kT
[(2-a) &= mi ‘ (Az)?
4f (:ctlTl) i=1,..,N—1,1=1,..,R,  (220)
with f (xi,tl,T(xi,tl)) ~ f (:Ei,tl, Tzl = —BT%Z +C.

For consistency with the order of thé spatial discretisation at grid pointsi = 2, ...., N—2,
we also assume a second order approximation for the Neumann boundary conditions. For
that, a second order forward and backward finite difference formulae were used (assuming
T € C? with respect to space):,

oT(x,t)  —T(x2,t;) + 4T (21, ;) — 3T (o, 1) ,
0 ey 2Az +0((Ax)7), (2.21)
oT(@, ) _ 3T, ) — AT (zn—1,t) + T(zn—2,t1) 2
0 pop 2z +0((Ar)") (2.22)

'This way we can obtain the following approximate expressions for the temperature at z
and z y,

1 4 QAxfo(t)
T(l) ~ _7T2l + *Tll + T(O)

3 3 (2.23)

and
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4 1 2A t
Tl ~ 3T 1~ g Th s - 250

3 3 3k (L) 2.24)

where fo (t) stands for go or gocos (wt) and f7, (¢) stands for 0. In order to keep the method
as general as possible we will proceed using fo (t) and fr (£) (two functions of time) as the
imposed fluxes.

The following lemma establishes the second order approximation at the boundaries.

Lemma 2.3.1 Let u(x) be a well behaved function, with continuous derivates up to a desired
order (u(z) € C*). The discretization of the diffusion term at x = x1 given by

0 ou(z) N kfu(we) — (ki + ky) w(@) + ky u(zo)
2 (k(m) e ) ~

(Az)?

(2.25)

r=1

with

u\x x 3 3U T
u(zo) = Julm) — su(rs) — 2Az <‘9 ;x°)> + Q(Ag ) (a 823°)> (2.26)

is a second order (O(Ax)?) approximation.

Proof2.3.1 Let us write % (k (z) 8?)(;)) = f(x). From the Neumann boundary condition

we know that

=A (2.27)

T=T(Q

with A representing a general function. A Taylor series expansion of fucntion u(x) centered in
x = X 15 given by:

w(zr) = ulwo) + Az f’“<xo>)+<m>2 (82U($0)>

ox 2! 02

A (2.28)
P (23 ot
du(zo)\ . (2Az) [ Ou(zo)
u(ze) = u(xo) + 2Ax amo AT ( 8x20> (2.29)

n (2Az)3 (83u(x0)

31 923 ) +O((Aa)")

We want to prove that for the case when xq is not known (a Neumann boundary condition
is provided at the boundary x = o), we can still obtain a second order approximation for the
diffusive term at x1.

By using Egs. 2.28 and 2.29 we observe that

u\x xr 3 3u X
_ gu(xo) + 2u(zy) — %u(@) ~ Az (3 ;x[))) - 2(A3! ) (a 33(530)> +0((Az)Y)
(2.30)
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and therefore we obtain the following approximation for the one-sided derivative

ou(x)
Oox

~ —u(w2) + 4u(ry) — 3u(xo) 9
= 2 th O+ o((Ax)?) (2.31)

and also an approximation for u(zo),

u(zg) = %u(xl)—%u(xg)—gAm (8 a(mO)>+2(A9 ) (a 8i30)>+0((A33)4) (2.32)

Making use of the initial condition, Eq. 2.27, the previous equation can be re-written in the
Jfollowing form:

1 20z A 2(Az)3 <83u(x0
9

u(zo) = %U(.Tl) - gu(m) ~ 73 ko) B3 )) +O((Az)h). (2.33)

Ifu(xg) is known, we have that

kfu(we) — (ki + ky ) u(@r) + ki u(wo)

f(xl) = (Ax)2

+0((Az)?) (2.34)

and, the substitution of Eq. 2.33 into Eq. 2.34 leads to the following expression,

ki (u(wa) — u(z1)) — by (u(z2) — u(z1))

fz1) = Aoy
2k (u(w2) — ulz1)) 21;1 % + @ (6351(”?0)) (2.35)
+ + ’
(Az)? (Az)
O((Az)7)

The following Taylor series expansion,

u(z1) = u(wo) + Az (8u(x0)> I (Ag;)2 (82u(m0)) I (Az)3 (a u(wo)) + O((Aa:)“),
(2.36)

u(az) = u(wo) + 20 () 4 G (Fpee)) 4 BGRE (Tn)) 4 O((Aa)')
(2.37)

results in the difference:

u(xg) B u(xl) — Az <6u(9(;60)) + 3(A2m)2 (62(;95:2100)) + 7(A6 )3 (3 5£§0)> + O((Am)4)
(2.38)

This leads to:
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Ky (u(z2) — u(1)) — by (u(x2) — u(z1))

f(xl) =

(Ax)?
Qu(wo) 3(Az)2 [ 0%u(zo) 7(Az)? [ 33u(xo)
i or () 2 () g )
(Ax)® '
_2k] AzA 2k{ (Ax)3 (83u(w0)>
+
3 R0 9 93 9
+ + O((A
" (2"
This equation can be further simplified:
Fzy) = ki (u(zg) —u(@1))  u(x)) = ki (u(ez) —u(z))
(Ax) (Az)®
(Aa2kf (Lalan)  (Aayihy (Zalao)) (2:40)
+ —l—O((Aa?)Q).
(Ax)® (Ax)?
We know that:
+ 2 92+
u(zg) = uf + %aul (AZ{2) 88u21
Az Pur T (241)
al 93 + O((Ax)Y)
+ 2 92, +
(@) = ut — Ax(?ul (Az/2) 8u21
(Am/2)3 By 2 (242)
RO L oan?)
w(ws) = ur 3Az 0uy  (3Az/2)° 0°u
2 0% _ 2! 8362 (2.43)
(3Az/2)3 0%u; Ay
g g8 TO(Az))
2 92,,—
W) = ur +%8u1 (Ax/2)* 0%ug
2 .0 2! Ox? (2.44)
(Ax/2)* Py ; |
3] 923 + O0((Ax)Y)
withu (x. 1| = u;. Wecan therefore obtain the following differences:
ziQ ;t g
9 + Azx/2 2 82 +
u(we) —u(r) = Aw 812 —i—( w3/ ) 8521 +O((Ax)"), (2.45)
- 2.+
(22) —u(er) = ArTL 4 (A2 2
Oz 0z (2.46)
13(Az)3 93uy 4 ’
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If we insert Eq. 2.45 in the first term of Eq. 2.40, Eq. 2.46 in the second term of Eq. 2.40 and
taking into acount that

kT Buf — Ouy

flan) = =2 B 1 O((A)%) (2.47)

we obtain:

ki (u(r2) — u(z1))  w(z1) — ky (u(x2) — u(z1))

(Az)? (Az)?
(Ax)%k; (Lu(go)) (Ax)3ky (L’u(go)) (2.48)
+ (Ax)Zaa: (Ax)Zam —f(il?l) :g(fE)
with
Az)3 , + 0%uf Az)d, — 3ul
o) = B T~ ik
(Az)?
(a2 2~ (Ag)? Luleo) | Bty (A g)3 Pulae) | (2.49)
o (Ac)?
+0((Az)?)
Since
Azx)® | 0Pt Azx)®  _9Puy
(24) iy ( 24) b g = 0((82)’) (2.50)
~ (Ax)? 9 O3u(ry) 9 :
= |oa \F) T ) TOUADT
and

(Ao <32u(l‘o)>:(Ax)262u () - @ap@ulmn) o o

Ox? 912 5 93
3 Bux i
(Aey <agm(§’co)> = (Az)* gm;)J +0((Ax)") (2.52)

we have that,

ki (u(z2) — u(z1))  w(z1) — ky (u(w) — u(z1))

(Al“)(Q ) ((Aw)z ) (253)
(Ax)zkii- 02;30) (A$)3k1_ 33;9%0) , 2.53
e T~ f(an)| = Ol(as)

and therefore a second order (O((Ax)?)) approximation is obtained.
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We now present the system of equations that we need to solve. Using (2.23) and (2.24)
in equations (2.20), for i = 1 and i = N — 1 we obtain:

- l
(At) ° (a) l—m 0\ _ 1 !
m Z Ui (Tl - Tl) - k% - gk% DT2

=0
1 A
—( (ks — ki1 )|D+B T{+2k;DM+C, (2.54)
2 3 2 2 3]€0

— l
(At) “ « _ 1
m Z CLgn,)l (T]l\/—nll - TJ(\)7—1) = - k2N273 - §k21\r271 D+ B T]l\[_1

m=0
fr(t) Az

T +C. (2.55)

1
+ (kzN:s — kle) DT}V,Q —2kan1 D
2 3 2 2

Fori=2,...., N — 2 we have:

l

At)™¢ o .
I‘((Q)—a) Z afm)l (Tzl - Tio) = ki+%Dﬁ+1

~((kiry +hiy) D+B) Tl 4+ kDT, +C, (256)
2 2 2
A
—.
Introducing the vectors

where D =

. T

xr = [ rr T2 ... ITN-1 ] s

T=[71 1 - 1, ], (2.57)
0*T T

W(I’tl) { TL(rr,ty) Lo (e ty) - L (wn—1,t) } ;

the right-hand-side (rhs) of system of equations (2.54)-(2.56) can now be written in a dis-
cretised matrix form (for a time level [), as:

82T = [ [ l
W(x’tl) —BT'+C =~MT"'+ S, (2.58)
x
where
T
S'=| C+26,Dsiffo(t) C - € C—2kwaDEEfL(W) | (259)
and
e1(-1,-3D-B  ¢i(1,-5)D 0 0 0
ksD “po(L)D - B ksD 0 0
M — } - 7
0 kD —p(L)D—B k1D
0 0 en1(=5, DD ¢ni(35,-1)D - B
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with ¢;(wy,we) = wlki_% + wgki_%.

'The approximation (2.17), at (z,t) = (=i, 1;), for the time fractional derivative can be
written as,

8T At)~® (@) = (a
e (s t) r(@)a) (T o an (1) = YAt -1 ) @

or, in matrix form,

T (A (0 S @pem N @0 o
T (x,tl)~w<T +mZ:1am’lT —mZ:lam’lT ~T0). (2.62)

From the previous considerations we are now in position to describe the numerical
scheme. Assume that we are at time level / and that we know the temperature field from
the previous time levels, then from (2.58) and (2.62) the system of equations that needs to
be solved can be written as

-1 -1
T+ 3 [al) T =107 alt) - T0 = AMT' + AS' (2.63)
m=1 m=1
with A = L_fi). Or, in an equivalent form,
(A) -
I AM)T = = 37 [afT " 4 TO+T0 S ) + 48" (2:64)
m=1 m=1

The matrix I — AM, where I is the (N — 1) x (N — 1) identity matrix, is a strictly
diagonally dominant matrix. Therefore the matrix I — AM is invertible and the system
(2.64) admits a unique solution given by

-1 -1
T = (1— AM) ! (- > la T AT TN Gl ¢ Asl> (2.65)
m=1 m=1

2.3.4 Stability and Convergence of the Difference Scheme

In this section we will prove the stability and convergence of the proposed method. Some
of the ideas used in the demontrations were based on the excellent work by Huang et al.

[150].

2.3.5 Stability of the Difference Scheme

For the proof of stability, the following lemmata will be used.

Lemma 2.3.1 [150] Let L be an arbitrary square matrix. Then for any matrix norm, we have
p(L) < ||L|| where p(L) represents the spectral radius of L. Moreover for any € > 0 there exists
a norm, denoted by ||.|_, such that |L||. < p (L) + &.
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Let A be a complex n X n matrix, with entries a;;,. Fori € {1,...,n}let R; =
> ;i |aij| be the sum of the absolute values of the non-diagonal entries in the ¢ — th row.
Let D(aj;, R;) be the closed disc centered at a;; with radius R;. Such a disc is called a
Gershgorin disc.

Lemma 2.3.2 Ewvery eigenvalue of A lies within at least one of the Gershgorin discs D(a;i, R;).

Theorem 2.3.1 Ler 0 < € < At, the scheme given by (2.65) is unconditionally stable with
respect to the initial conditions.

Proof2.3.2 For the proof of this result, we will assume the existence of two different vector solu-
tions, Hl1 andH (that satisfy Eq. 2.65) with different initial conditions (H[f #* Hg) but same
boundary conditions. The difference H = Hl Hl2 satisfies the following equation,

-1 -1
(- AMH' = =3 [ "] + HO+ HO Y o) (2.66)
m=1 m=1

From Lemma 2.3.1 we know that, given ¢ > 0, there exists a norm ||.|| . such that

H(I— AM)

<p(@-amt) +e (2.67)

Using (2.67), for | = 1 we obtain
[, = |- am~tEe|

IN

= an ] ey,
< (p(@-am) ) +e) H.  @68)

A

Since A, D, B and k; are all positive, using the Gerschgorin Theorem is straightforward to
prove that p (1 — AM) > 1 which implies

0 ((1 . AM)*l) <1 (2.69)
Hence, from (2.68) it follows
B, < (o) 10 20)

Now, assume that the following relationship holds,

|| < a+of HO) k=12 (2.71)
we will prove Q)Hl"'lﬁ l+1 H OH
From (2.18), (2.19), ( (2 69) and(Z 71), it can be deduced that
e a5 (st e e S ()
m=1 m=1 €
1 l
< o (|3 [ mee] | [ 3 ()10,
1
< asa ([ aror el [oe S| oo
< (e RO < 00 @)
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Assuming 0 < e < A, from (2.72) it follows that

HHZHH <eT”
£

H|

£ )

meaning that our numerical scheme is unconditionally stable with respect to the initial conditions.

2.3.6 Convergence Analysis

Let us define the vector of the errors at time step :
l Ll l
e = |:61, 62,...,€N_1 5 l:172,...7 5

where e} = T (z;,t)) — T} | = 1,2,...,i = 1,..., N — 1 is the error at each point of the
mesh.

LetT,, = [ T(21,t) T(w2,t) -~ T(an-2t) T(zn_1,t) ] bethevector
containing the exact solution for each node 7 (at time step ).

It can be easily seen that T, , satisfies the following equation,

-1 -1
_ L (a)pri—m 0 0 ()
(I AM) Tan - z_:l [amJTan } + Tan + Tan z_:l am’l (273)
+AS' + AR
where R = [RY, R, ....,R\_,]isa (N — 1) x 1 vector containing the errors com-

mitted in the discretisation of the derivative operators. If T'(z, t) is sufficiently regular, from
(2.16), (2.17), (2.21) and (2.22) it is straightforward prove that the truncation error at each
point (z;,t;), i = 1,..., N — 1 satisfies

R =0 ((Am)Q) +0 ((At)z’a) . (2.74)
On the other hand, the approximate solution T! obtained from the proposed method satis-
fies
-1 -1
(1= AM)T = = 37 [afT "] + T+ 103 aff) + A8, (2.75)
m=1 m=1

Subtracting (2.75) from (2.73) we have (notice that e’ = [0, 0, ..., 0]),

e = (I-AM)~! (li (=) ] + ARl> (2.76)
m=1
Therefore, for l = 1,2, ..., R we have
], = 0+a S (o] +ravalw]
m= €

, (2.77)

5

< 1493 (~de) e
m=1

6+A(1+E)HRZ
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2.3. A Numerical Method for the Fractional Diffusion Equation with Neumann Boundary
Conditions and a Space Varying Diffusion Coeflicient

where € is a positive constant such that e < At.

Let us define a sequence {p; };en, such that p; —pj41 = ai?’)l_s_l, m=0,1,...,1—1.
Then p; = (I + 1)1_0‘ — 7@ 1=0,1,...,and from (2.18) we can conclude that p; is a
decreasing sequence. Taking this into account, in what follows we prove by induction on [,
that

l

<CA(1+e)pYy ((At)H + (Ax)Q) L 1=01,.... (2.78)

g

From (2.77) and (2.74) we obtain

lell. <A+ [RY, <CAG+e)pt (A0 + (A2)),  @79)

then (2.78) is valid for I = 1. Now, suppose we have
lefll. <ca@+e) pty (AP +(A2)?), j=12....1 (280
we want to prove that

lett], <CA(+e) it ((A02 +(A2)%)) . (2.81)

From (2.77), (2.74), (2.80), and using some properties of the sequences p; and afs)j (ex-
plained before), we obtain ’

Hel+1 < (1+9) zl: (—aﬁfj’)m) CA(L+e)™p ((At)Z—a i (Ax)Q)
m=1
+ (1+¢)CA ((At)H + (Ax)2>
< C ((At)%a n (Ax)z) (146 prt (i (—afﬁ,)m) +pz> (2.82)
m=1
Since

!
Z <—a$,f7)l+1> +p=(@po—p1+p1—p2+..+p-1—p)+p=p =1,

m=1

from (2.82) it follows

Hel+1

_<¢ ((At)Q‘a + (Am)Q) (1+¢)*pt,

and by induction (2.78) is valid for [ € N.

Theorem 2.3.2 Let 0 < & < At, if the solution of (2.10) is of class C* with respect to t and of
class C* with respect to T, then there exists a constant Co independent of Az and At such that,

|

e ((At)H + (A:p)Z) . 1=0,1,.... (2.83)
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Proof2.3.3 From (2.78), the el‘ satisfies
&€
e < Elor@—ape (a0 (1 + o) (a2 + (aa)?)
€ b
< liacr@ T (1+¢) ((AD)?“(Az)?), 1=0,1
S o —a)T"" (1+e) ((A)" " (Az)™), 1=0,1,....
On the other hand,
. . =
lim — = lm ————
l—00 Py lsoo (I + 1)@ — [~
1 . 1\* T
Sy e

Thus, for 0 < ¢ < At, (14 €)n+1 < el” it follows (2.83), for some positive constant Cy that
does not depend on At and Ax.

Note that the convergence order depends on the fractional order cv. For a method pre-
senting optimal order convergence without the need to impose inconvenient smoothness
conditions on the solution, see the work by Ford et al. [83].

2.3.7 Methodology Assessment

In order to illustrate the effectiveness of the method, some examples for which the analytical
solution is known are presented. The error is measured by determining the maximum error
at the mesh points (x;,1;):

Earar=_  omax T(xi,tj) — TY, (2.85)

where T/ is the numerical solution at (;, ;).

Example 2.3.1

0°T(x,t) 0 OT (z,t) 32 o (3

"ot _3x<(x+l)ax 02 (2 o
3/2—a,.2 -

—T(x,t) _ 3t3/2 (1 _ 31’2) - 3ﬁt T (2_/13 3)

8 (5 — o) (2.86)

T(z,0) =0, 2€(0,1)
OT (x,1) =0, te(0,1)

ox

z=0,1

whose analytical solution is T'(z, t) = 13/24:2 (% — x), and,

Example 2.3.2
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Table 2.1: Numerical results obtained for the problem given in Eq. 2.86, for two different
values of v (% and %): values of the maximum of the absolute errors at the mesh points and
the experimental orders of convergence p, for the variable ¢ (Az = 0.002).

Step-sizes a=3/4 a=1/2
At | Az | easat | P | Enzar | P
1/16 | 0.002 | 0.00207 | — 0.00185 | —

1/32 | 0.002 | 0.00090 | 1.19 | 0.00075 | 1.33
1/64 | 0.002 | 0.00039 | 1.21 | 0.00030 | 1.35
1/128 | 0.002 | 0.00017 | 1.22 | 0.00012 | 1.35

Tt _ 0 AT (x,1) ) ot
ota T or <($ =+ 1) o — Cos (t) I — 1
—t? (_1 + 322 + 4:53) cos(t)
g aree [20eR (103 (B3 - 2-5h-)
4 '3 —a)

t2
(_4+I3)xt7(x 6t42F3 ({273}7{373_373_3}’—4>
—

1 (- a)
—T(z,t))
T(x,0) =0, =€ (0,1)
OT (x,t) 9 oT (x,t)

pr— pr— 1

9 |, t° cos(t), or |, 0, te(0,1)
(2.87)
whose analytical solution is T'(,t) = cos (t) (x — %), with o F3 (...;...;...) the gener-

alised hypergeometric function.

In Tables 2.1 and 2.2, we show the time and space convergence orders obtained for Ex.
2.3.1 using two different values of « (% and %) Note that the analytical solution is not
smooth at ¢ = 0, and therefore, we are expecting a reduction on the theoretical convergence

order ( the convergence order depends on « (O ((At)%a) ) , and so, for a smooth function,

we would obtain in the limit of a highly refined mesh, an experimental convergence order
of 1.5 when o = 0.5 and 1.25 when o = 0.75).

For the space variable, we obtain an experimental convergence order of 2 (in the limit of
a highly refined mesh), while for time, the convergence order slightly decreased, as expected,
being 1.35 for a = 0.5 and 1.22 for v = 0.75. Nevertheless, the computations were easily
performed, indicating that the method can deal with nonsmooth solutions.

Ex. 2.3.2 was also used to test the convergence order of the method. In this case, the
imposed temperature flux is a sinusoidal function of time, that may be interpreted physically
as a pulsating temperature applied at the surface of an object. In this case, the analytical
solution is a smooth function in both time and space.
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Table 2.2: Numerical results obtained for the problem given in Eq. 2.86, for two different
1 3. s :
values of a (5 and %): values of the maximum of the absolute errors at the mesh points and
the experimental orders of convergence ¢, for the variable = (At = 0.001).

Step sizes a=3/4 a=1/2
At Az | eazAt q €Az, At q
0.001 | 1/8 | 0.02687 | — | 0.02929 | —

0.001 | 1/16 | 0.00718 | 1.91 | 0.00780 | 1.91
0.001 | 1/32 | 0.00183 | 1.97 | 0.00201 | 1.96
0.001 | 1/64 | 0.00045 | 2.04 | 0.00051 | 1.99

Table 2.3: Numerical results obtained for the problem given in Eq. 2.87, for « = 0.9
: values of the maximum of the absolute errors at the mesh points and the experimental
orders of convergence p, for the variable ¢ (Az = 0.002).

Step-sizes ‘ a=0.9

At | Az | eagat | P
1/10 | 0.002 | 0.00929 | —
1/20 | 0.002 | 0.00449 | 1.05
1/40 | 0.002 | 0.00213 | 1.08
1/80 | 0.002 | 0.00100 | 1.09

Table 2.4: Numerical results obtained for the problem given in Eq. 2.87, for &« = 0.9
: values of the maximum of the absolute errors at the mesh points and the experimental
orders of convergence p, for the variable x (At = 0.001).

Step sizes a=0.9

At | Az | eazat | 4
0.001 | 1/4 |0.06052 | —
0.001 | 1/8 | 0.01855 | 1.71
0.001 | 1/16 | 0.00513 | 1.85
0.001 | 1/32 | 0.00038 | 1.90

The results presented in Tables 2.3 and 2.4, show that the convergence orders obtained,
match the theoretical predictions, reinforcing the robustness of the numerical method pro-
posed.

Note that the numerical method was derived for the numerical solution of equations
that are simpler than the ones presented in the two previous examples. Nevertheless, the
numerical method proved to be robust, providing the theoretical results we were expecting.
The reason for choosing these two examples, was based on the lack of analytical solutions
for fractional differential equations with the structure of equation (2.10).

2.3.8 Case Study

In order to test the influence of the time-fractional derivative on the classical bioheat equa-
tion, we used as a case study, the heating of skin assuming we have a geometry as the one
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shown in Fig. 2.2(a), where different layers of skin are shown.

From the practical method of measuring the body temperature with our own hands, to
the use of highly sophisticated measuring devices, we can find diverse alternative possibilities
and intense theoretical and experimental research work that resulted in major advances and
increased knowledge of temperature distribution inside the human body. The pioneering
work of Harry H. Pennes [151] in 1948 is the cornerstone of the mathematical modeling
of temperature diffusion in tissues, but, as happens with most initial modeling approaches,
it required some improvements.

Pennes’ [151] bioheat transfer equation (see also [152], [153], [154], [155], [156],
[157]), which describes the thermal distribution in human tissue, taking into account the
influence of blood flow, (see Fig. 2.2(a)) is given by,

Or(x,t) _, 0°T(a.t)
ot 922

e +Wyeo (To —T)+qm, t>0, 0<z<L, (2.88)

where py, ¢; are constants representing the density [kzg / m3] and the specific heat [J/ (kg °C)],

respectively, and k is the tissue thermal conductivity[J/(s.m °C)]; W}, is the mass flow
rate of blood per unit volume of tissue [k‘g / (s.m3)}; ¢p is the blood specific heat; g, is
the metabolic heat generation per unit volume [.J/(s.m?)]; T, represents the temperature
of arterial blood [°C]; T is the temperature and the term Wyc, (1T, — T') represents the
blood perfusion. It is worth mentioning that the IV}, constant was experimentally obtained
by Pennes for a human forearm (he adjusted W, until the temperature theoretical results
matched the experimental ones).

The bioheat equation presented before (2.88) is now adapted, using the time-fractional
derivative instead of the first-order time derivative, aT(r t), generalizing in this way the
or1g1nal equation derived by Harry Pennes (Eq. 2.10 w1th with0 < o < 1,and A =

Wer  and O = WeceTatdm) Ttis worth-mentioning the fact that we have

pt(’tTo‘ 1y - preeTY 1 precTe
added a new parameter 7 [s] to the equation, so that it becomes dimensionally consistent.

Case study I:

Three layers are considered, the epidermis, dermis, and, the subcutaneous tissue, with the
space variable, x, ranging from 0 to 0.005 [m]; since the thermal conductivities of the epi-
dermis, dermis and subcutaneous tissue, are given by 0.23, 0.45 and 0.19 [W/(m°C)],
respectively, we will use a logistic function to obtain a smooth variation of the thermal con-
ductivity on the transition regions (from one layer to another), allowing this way to test the
robustness of the numerical method. The density and the specific heat are the ones from
the subcutaneous region, that is, p, = 1000, ¢; = 2675. The thermal conductivity function
is given by:

-1 -1
k(z) = 0.23 + (1 n e[m<—$+°~00008>]) 0.45 — (1 n e[m("”+°~°0208”) 0.26 (2.89)

and L = 0.005 [m] (with m a parameter that allows tuning the smoothness k between two
layers. For this particular case we have considered m = 100000). We have also considered
ablood perfusion rate of W}, = 0.5 [138], a specific heat of ¢;, = 3770, and an arterial blood
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(@ (b)

Epidermis
\1- , ‘ Io.oa [mm] 520

50.0
Derma —
[ 4 [ 4 2 [mm] g 480
© 260 F
2 440 |
S 440 F
i )
[ Y 3 \
Subcutaneous/ ® 18 [mm] S 420 F )
tissue . g
= 40.0
Muscle 380 ¢
tissue 36.0 :
0 0.001 0.002 0.003 0.004 0.005
Venous capillaries x [m]

Arterial capillaries.

FIGURE 2.2: (a) Different skin layers. (b)Variation of temperature for constant t = 2 [s| and
two different values of o, 0.999 and0.8 (7 = 1).

temperature of T, = 37 (note that the epidermis perfusion rate is zero [158]). Addition-
ally, the metabolic heat generation ¢, and the temperature flux ¢p on the skin surface are
assumed to be, respectively, 368.1 and 5000 [J/(s.m?)].

Fig. 2.2 shows the variation of temperature along the different layers of skin, for ¢t =
2 [s], and considering two different values of cv (0.999 and 0.8).

Convergence was possible to obtain, and, we can now see that using a complex space
varying thermal diffusion, with do not need an equation for each skin layer.

Case study II:

In this last case study, we used the experimental data provided by Barcroft and Edholme
[159] for the temperature variation inside a human arm. One of their experiments consisted
of measuring the temperature decrease of the subcutaneous tissue (1 cm below the skin
surface) when the forearm is submersed in a 12°C' water bath (see Fig. 2.3 (a)).

(a) (b)

needle
32 O Experimentaldata
6 a=1 - ==~ Classical bioheat equation
&7 FO Fractional bioheat equation
£
= [
S 22 f
2
. E [ o096
water 17 r .y O0O®w_ " --c._
12°C &= [ Te1=0.5248
12 C 1 L L 1
o Location in the forearm where the temperature is measured 0 20 40 60 80 100

t[s]

FIGURE 2.3: (a) Experimental setup. (b) Fitting experimental data (case study II).

For the numerical tests we have assumed a 1D problem, and, even then, good results
were obtained by setting o = 0.96 and and 7! = 0.5248 (based on the data provided
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in the papers [159] and [160] we have used the following parameters: initial temperature
of 33.6C, py = ¢; = 1g/em?, py = ¢y = 1[cal.g7.C™1], ¢ = 0.0001 [cal.s~ .cm™3],
k = 0.0015cal.s"L.em™1.C~1, Wy, = 0.000016). The boundary conditions are given
by,

oT (x,t) _0 (2.90)
Ox =0 ’ .
T(z,t
_p, @) = 0.0075 (T — 12).. (2.91)
O =4 [cm)]

In Fig. 2.3 (b), we show that the proposed fractional bioheat equation can be used to
improve the accuracy of the numerical predictions.

2.3.9 Conclusions and Discussion

A numerical method was devised to solve a general fractional diffusion equation equation,

which was proved to be stable and convergent. The method can deal with the Neumann
boundary conditions and the variation of the thermal diffusivity in space. We managed to
obtain a better fit of experimental results by using the fractional bioheat equation, but, this
conclusion should be explained with care. There is no doubt that the fractional derivative
may improve the quality of the model, but we have added a new modeling parameter, and
therefore, we can not say this is a better model when compared to the classical one.

The typical substitution of the classical derivative by a fractional derivative should be
performed with care. First: there should be a physical reason for this substitution, and,
second: the units of the parameters used in the equations are changed in the presence of the
fractional derivative, therefore we can not used them as regular properties (see Fig. 2.4). A
discussion on this subject is provided in [161].

P8 —=k—+W,c (T,-T)+aq,

kg J |c J °C kg J J
= °C -~
a=1= m® kg°C| s sm°C m*  sm’ kg°C sm’
\ Il J
Y Y
3 3
sm’ sm’
kg J m J °C kg J J
#* —_
a#zl= 5 kg°C|s” sm°Cm*  sm’ kg°C sm’
\ J \ )
Y T
) Bl
s*m’ sm’

F1GURE 2.4: Dimensional analysis.
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'The main conclusion is that fractional derivatives can improve physical processes but a
discussion on the results obtained and a comparison with the classical case should always be
provided.

Regarding the numerical method, it should be highlighted the fact that when deriving
the proofs of convergence and stability we have assumed certain regularity properties of the
solution that may not be verified in reality. In this cases we are expecting the order of the
method to decrease. This topic will be addressed later.



Chebyshev collocation methods: a faster numerical

method 3

3.1 Introduction

The numerical method derived in the previous section taught us that the numerical solu-
tion of fractional differential equations is computational demanding. Therefore, different
numerical techniques should be considered, besides finite differences. In order to enhance
the fact that these computations are demanding we consider in this chapter an even more
general operator, known as Distributed-Order fractional derivative.

. Pafnuty Lvovich Chebyshev was a Russian mathematician born
in 1821. He suffered from gluteus medius lurch and therefore
he limped and walked with a stick. His disability prevented him
from playing with children therefore he devoted himself instead
to mathematics. Chebyshev is known for his work in the fields of
probability, statistics, mechanics, and number theory, mainly for
the Chebyshev inequality and the Chebyshev polynomials. He
was Professor of well-known students such as Aleksandr Lya-

punov, and Andrei Markov, and, a lunar crater was named after
him.

Ficure 3.1:  Pafnuty
Chebyshev

Next we present a brief justification on the need of this operator to model physical
phenomena, followed by the existence and uniqueness results for the solution of Ditributed-
Order Fractional Diftusion Equation. We then present the existing numerical methods for
the solution of such equations, and, we propose a new numerical method that is faster than
the typical finite-differences technique. We finish with the proof of convergence of the
numerical method and perform some tests on the robustness of the method for singular
solutions.
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'The Time-Fractional Diffusion Equation presented in the previous section models dif-
fusion processes that follow < (z(t))? >~ t®. In the real world, there are more complex
systems that may present more than one characteristic scale, a mean square displacement
that evolves with time (as is the case of complex systems where the morphology of the ma-
terial changes along the process), etc. This means that fractional differential equations are
a good tool for modeling some of the processes, but, in order to model correctly certain
complex systems a more powerful mathematical tool should be used.

'The answer to this problem of non-unique scalability was given by the creation of dis-
tributed order fractional differential equations [162; 163] that proved to be useful in model-
ing anomalous diffusion characterized by two or more scaling exponents in the mean squared
displacement. A close look into the physics of some complex diffusive processes, suggests
that an even more general theory for fractional derivatives should be devised, and, this will
no doubt be developed in the near future [119; 108; 110; 64].

As Chechkin, Gorenflo and Sokolov [162] observed, ‘the development of numerical schemes
Jor solving distributed-order kinetic equations and for modelling sample paths of the random pro-
cesses governed by these equations is also of importance.”, meaning that numerical schemes for
the solution of this type of equation are demanded. This is the main motivation for this
chapter, where we present a numerical method for the solution of the general distributed-
order time fractional diffusion equation (the concept of distributed order was developed by
Caputo [164] and further developed by Caputo, Bagley and Torvik [165; 166; 167; 168]),

/1 () 0%u(x,t) d 0u(z,t)
0

where the function ¢(«) aclting as weight for the order of differentiation is such that ([169],
[170]) ¢(a) > 0 and / c(a) da = C > 0. Obviously, if ¢(5) = dC)

Da where §() is the
delta Dirac function, ther? (3.1) reduces to (2.1) (this means that the method derived in this
chapter can also be used to solve the Time-Fractional Diffusion Equation, and, this partic-
ular case will be described later). Note that the dimensions of ¢(a) are [time]® / [length)]®.
For an alternative to these dimensions please consult the work of Chechkin et al. [163]
where they use an extra constant that represents a characteristic time of the problem.

Here, we will be interested in the numerical approximation of this type of distributed-
order equation with boundary conditions of Dirichlet type:

w(0,t) = @o(t), u(b,t) = op(t), 0<t<a, (3.2)
and initial condition

u(z,0) = go(z), 0<az<b. (3.3)

3.2 Existence and Uniqueness of Solutions for the Distributed
Order Diffusion Equation

WEe begin this section with some results on the well-posedness of the problem we intend
to solve numerically. Such results are still very scarce and may be resumed in the following



3.3. Existing numerical methods for the solution of Distributed Order Fractional Differential
Equations

theorems (adapted from [171]).
First, we define the spaces

W((0,a)) = {g € C*((0,a]) such that ¢’ € L((0,a))} .

2
Ma = {g € C}([0,a]) N C2(0,b) such that% e L%((0,b)) and g(0,t) = g(b,t) = 0

Theorem 3.2.1 Consider the distributed-order time fractional diffusion equation (3.1) with bound-
ary conditions of Dirichlet type (3.2) and initial condition (3.3).

If f(x,t) € C((0,b) x (0,a)), po(t), ou(t) € C([0,a]) and go(x) € C([0,b]), then the prob-
lem (3.1)~(3.3) possesses at most one solution u(z,t) € Cy([0,a]) N WE((0,a)) N CZ((0,D)).
Moreover, that solution, if it exists, continuously depends on the data given in the problem as
Jfollows

aa

CT(1+a)" (3.4

|l — |00 < max{eg,e€1,€2} +

for the solutions w and U of the problem (3.1)-(3.3) with the data f, go, ¢o, ¢» and f, Go, b0, dn
respectively, that satisfy the conditions || f — flloo < €, [|90 — Golloo < €0, [P0 — Polloo < €1

and ||gp — dpllc < €2.

In[171], Luchko also addressed the question of existence of solution. He considered the
case where ¢o(r) = ¢p(x) = 0 (mentioning that the more general case of non-vanishing
functions ¢ could be reduced to this one) and he stated sufficient conditions for the existence
of a formal solution, which could be regarded as a classical solution of the problem, that is,
a function u € Cy([0,a]) N W} ((0,a)) N C2((0,b)) satisfying the differential equation
together with the initial and bondary conditions.

Theorem 3.2.2 If the conditions of Theorem 3.2.1 are satisfied and if the source function f € Ma
and go € M, then there exists a solution u(x,t) of the problem (3.1)-(3.3) that belongs to the
space Cy([0,a]) N W((0,a)) N C%((0,b)).

3.3 Existing numerical methods for the solution of Distributed
Order Fractional Differential Equations

With the growing interest on this type of equation, numerical methods started being de-
veloped, for example in the work by Diethelm and Ford [172] where they present a basic
framework for the numerical solution of distributed order differential equations (see also
[173; 174]). A more recent increase in interest in the use of distributed order differential
equations (particularly in the case where the derivatives are given in the Caputo sense) led
Ford and Morgado [175] to discuss the existence and uniqueness of solutions for this type of
equation, and also to propose a numerical method for their approximation in the case where
the initial conditions are not known (with boundary conditions being given away from the
origin). Two years later, Katsikadelis [176] devised a numerical method for the solution
of the distributed order FDE approximating them with a multi-term FDE (that is solved
by adjusting appropriately the numerical method developed for multi-term FDEs). In the
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same year, Liao et al. [177] investigated a class of modified Du Fort-Frankel-type schemes
for fractional subdiffusion equations in the Jumarie modified Riemann-Liouville form with
constant, variable or distributed fractional order.

In 2015, some papers were published on the numerical solution of distributed order
FDEs. Morgado and Rebelo [147] presented an implicit scheme for the numerical approxi-
mation of the distributed order time-fractional reaction-diftusion equation with a nonlinear
source term (see also [178]), Ye et al. presented two papers, one [179] considering the time
distributed-order and Riesz space fractional diffusion on bounded domains with Dirich-
let boundary conditions (deriving an implicit difference method for the multi-term time-
space fractional diffusion equation) and the other [180] presenting a numerical method
based on a compact difference scheme for a distributed order time-fractional diftfusion-
wave equation. Hu et al. [181] considered a new time distributed-order and two-sided
space-fractional advection-dispersion equation that was solved numerically using an implicit
method for the solution the multi-term fractional equation. Gao et al. published a series
of papers [182; 183; 184] where: [182] two difference schemes were derived for both one-
dimensional and two-dimensional distributed-order differential equations (he proved that
the schemes are unconditionally stable and convergent); [183] the Griinwald formula was
used to solve the one-dimensional distributed-order differential equations (two difference
schemes were derived and the extrapolation method was applied to improve the approximate
accuracy); [184] two alternating direction implicit difference schemes were derived for two-
dimensional distributed-order fractional diffusion equations (he proved that the schemes are
unconditionally stable and convergent). Wang et al. [185] derived and analysed a second-
order accurate implicit numerical method for the Riesz space distributed-order advection-
dispersion equation. Duong et al. [186] proposed a novel numerical scheme for analysing
the behaviour of a distributed order linear single input single output control system un-
der random forcing. The method is based on the operational matrix technique to handle
stochastic distributed order systems. Jin et al. [187] presented a numerical solution of an
initial boundary value problem for the distributed order time fractional diffusion equation.
They developed a space semidiscrete scheme based on the standard Galerkin finite element
method, and established error estimates for both smooth and nonsmooth initial data.

Finally, Chen et al. [188] developed a mixed finite difference/spectral method, and, Li
etal. [189] proposed a numerical method for solving distributed order diffusion equations by
using a classical numerical quadrature formula, and the resulting multi-term time-fractional
diffusion equation were solved by the reproducing kernel method.

In almost all the methods described so far, only finite difference approximations have
been considered for the fractional time derivative, and these methods may become compu-
tationally heavy due to the non-local property of fractional differential operators.

These authors assumed certain regularity assumptions on the solution in order to provide
the convergence analysis of their numerical schemes, although it is widely known that the
solution of fractional differential equations may be nonsmooth at ¢ = 0 even if the data is
infinitely smooth.

We consulted the few numerical methods existing in the literature for the numerical
solution of this type of equations, and, with the exception of one paper, all assume a high
regularity of the solution in order to prove the convergence and/or stability. For example,
we have that: in [176] the convergence and the accuracy of the method for linear and non-
linear equations are demonstrated through well corroborated numerical results; in [177] the
convergence of the method is obtained assuming the solution is Cﬁ:? (the same happens in
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[147]). In [179] is assumed that the solution is Cg f, in [183] C;’f.

In the work of Jin et al. [187] a first order numerical method is presented based on
convolution quadrature. Although in their method they do not require a restrictive regularity
of the solution, they also report a drastic reduction in convergence when using nonsmooth
data.

On the other hand, the idea of approximating the solution of fractional differential equa-
tions with truncated Chebyshev series has been widely exploited (see, for example, [190; 98]
and the references cited therein), but to the best of our knowledge, a complete and detailed
error analysis has not yet been provided.

It should be highlighted that the main aim of this chapter is to alleviate the computational
costs of the previously described method, without imposing highly restrictive regularity as-
sumptions on the solution.

Therefore, we present a new numerical method for the solution of the distributed order
time-fractional diffusion equation, that is based on the approximation of the solution by a
double Chebyshev truncated series, and the subsequent collocation of the resulting discre-
tised system of equations at suitable collocation points. An error analysis is provided and
a comparison with other methods used in the solution of this type of equation is also per-
formed. A discussion on the regularity of the solution and the order of convergence are also
performed.

3.4 Preliminaries

Here, we present some auxiliary results that will be used in the derivation of our proposed nu-
merical scheme, which is based on the representation of the solution by a truncated Cheby-
shev series expansion. Hence, we begin this section with some results related to this ap-
proach.

Chebyshev polynomials of degree n, T;,(z) = cos(n arccos(2)), are defined on the inter-
val [—1, 1]. In order to use them on the interval [0, L], for any real L > 0, we introduce the
change of variable z = 2t/L — 1 and obtain the so-called shifted Chebyshev polynomials

Trn(t) =T, (2; - 1) . These shifted Chebyshev polynomials can also be obtained from
the following expression (see [98]):
226(n+k—1)! ,
k _
TLn —nz 7L —k')'yct’ n—l,Q,..., (35)
where ,
Tr1,:(0) = (—1)" and Tp;(L) =1, (3.6)

and satisfy the following orthogonality relation:
L
/ Tr;()Trx(t)wr(t)dt = Sgjhy,
0

1
ithw,(t) = ———=andhg=m, hp, =2,k =
with wr, (¢) NiT 0 k=5
The Chebyshev series expansion of a function f(z,t), (z,t) € [—1,1] x [—1,1], can be

given by
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f(fL'?t) :ZZGUTZ ) :ZzaijTji(x;t)a (37)

i=0 j=0 i=0 j=0

where T); (z,t) = T; (¢) T (x). In Mason [191] the proof of convergence of the series
is prov1d76d ander the assumption that f(x,t) is of bounded variation and that one of the
partial derivatives is bounded (see also the works of Chen et al. [192; 193; 194]).

Generalising (3.7) for (x,t) € [0,b] x [0, a] the series expansion is given by:

ZZ“U a,i(O)Ty j(x ZZGUT(M x,t)(t), (3.8)

=0 5=0 =0 5=0

2t 2 a

where Ty, ;(t) =T; | — — 1> Ty j(z) =T <; - 1) and Tj(l;’ )(a:,t) =T, ()T ().
a

'The coeflicients a;; are given by

(b’a)
€; ej <f($,t),Tji ele]/ / fla, )T, Tbyj( )d & (3.9
A5 = = .
! 2 Vat — t2\/b:c -

withi,5 =0,1,2,... and,

1, i=0
€, = .
2, i>0

For computational purposes, only the first (n 4 1) and (m + 1) terms of the series are
considered, meaning that a function f(z, t) of two independent variables, (z,t) € [—1, 1] x
[—1, 1], may be approximately expanded in terms of truncated double Chebyshev series

P (f) (,t) = fom(z,t) = ZZ% (3.10)

=0 5=0

or

P”,m (f)( ) f’flm €L, t Zzam az Tb] ) (311)

=0 j=0
if (z,t) € [0,0] x [0, a].

In the work of Sommariva et al. [195], it is stated that if f is continuous and of bounded
variation, then for every € > 0, there exists an n (¢ ) and a sequence my, = m (k;¢), such

h - P, < h
that || = Pagmlly < & where |l = | max 1F(@8)].

The adaptation of this result to rectangular domains [0, b] [0, a] is straightforward. In that
case we also define

11l |f(x, 2)]

(w t)E[O b]><[0 al

Let J = [0,b] x [0, a] and define E(.J) as the space of all continuous real-valued func-
tions endowed with the norm

5 1 /a/b 5 1 1
== N dx dt. 3.12
1112 = | ] W@ s do (3.12)
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In [192; 193; 194] Chen et al. provides upper bounds for the truncation error of the
two-variable Chebyshev series expansion (3.11). This will give us an idea of the accuracy of
this approximation of the solution, in the cases where it presents some regularity. The first
result does not demand high regularity assumptions on the solution, which is the expected
situation in the fractional setting.

Theorem 3.4.1 Let g be in E(J), with J = [0,b] x [0, al, and such that, % € E(J). Let
Py be defined by (3.11), then

”(I - Pn,m)g”oo < Bum@Q

where
By = v(m) +v(n) +~(0) (v(n) + v(m)) , (3.13)
- dh dp 0%g
o=m{|] 2], |25} S
and

h(t>1/b<t> ! L4
oo ng, Vat — 2 bx — 22 “

() 1/a () L
€T = — :[/" .
p T Jo g Vat — 2 bx — 12

The next Theorem requires more smoothness conditions to be satisfied.

Theorem 3.4.2 Let g be in E(J), with J = [0,b] x [0, a], and such that, %, g;g, g;f €

E(J), for1 <k <p,1<1<p,0<5<2p,p>2. Let Py, be defined by (3.11), then

(1 — Pn,m)gHoo < Bnm@»

where

~ 2p
Bom =2 <bj> — ! — + 2”:; ! (3.15)
vam [[n=k) [[(m -k vm J] (m—k)
k=0 k=0 k=0
m+1
2p—2
vn || (n—k)
k=0
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0%Pg
Oxrotr ||’

0%Pg
oz ||,

0%Pg
ot ||,

9

and _
oo

} . (3.16)

Remark 3.4.1 From Theorems 3.4.1 and 3.4.2, it is clear that, as in the univariate case, the
smoother the function g(x,t) is, the faster the method converges. It is clear from these two Theorems
that, if a certain function is smooth then

(1 — Pn,m)g”oo < ApmC,

where Apm and C are given by (3.13) and (3.14) or (3.15) and (3.16) depending on the smooth-
ness of the function being approximated.

If we consider m = n we easily see that By, ~ % while By, ~ %, with C] and
C5 constants.

3.5 'The Numerical Scheme

In this section we describe the numerical method. As we will see, the method presented in
this work is faster than the typical finite differences approaches, where we need to compute
all the diffusion history at each time step (cf. section of numerical results).
If the source function f, and the functions ¢g, ¢p and g related with the boundary and
initial conditions, respectively, of the problem (3.1) satisfy the assumptions of Theorem 3.2.2
then the problem (3.1)-(3.3) has an unique solution u(z,t) € C4([0,a]) N W((0,a)) N
C2((0,b)). Furthermore if the solution w is a function of bounded variation, as we remarked
previously, based on a result from [195], it can be approximated by the truncated series
Up,m(z,t) defined in (3.11).

First, to deal with the integral term in (3.1), we use a Gauss-Legendre quadrature for-
mula with s points, with associated weights and points denoted, respectively, by w, and 3.
Hence (3.1) is approximated with

+
+1 8 5 Up.m (2, T P upm(z,t
,Z <Bq ) atﬁq;l( ) éx§ ) fer. 6w
2

Using (3.5) the following expressions can be derived:

8U/na+xt Z Za’l]Tb,] Z w(a)tk Oz (318)

i=[a] =0 k=[a]
8 unm Z, t J Y—2
2 Z Z a;jT,i(t) Z wj a7, (3.19)
=0 j=2 y=2

where the weights wz(f,? are defined by (see also [98])

22ki(i +k — D)IT(k+ 1)
(i — B)\(2K)!T(k 4+ 1 — a)ak’

(o) _ (_1)i—k

Wi = (3.20)

and the weights w; - are given by
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225+ = Dh(y = 1)
e 3.21)

%nserting (3.18) and (3.19) in (3.17), we obtain the following approximation of equation
3.1):

wjy = (—1)

1L B+ 1 SN i (Bt p Batl
) ch<q2 > > 2aulhyl@) 3wyt ETTE =

=t i=fefly 7=0 k=2t
m J
Z ai]‘Ta’i(t) Z w]‘;YI’Y_Q + f(x,t). (3.22)

i=0 j=2 y=2

In this case, since 227 € [0,1], ¢ =1,...,s, then [@1 =1,qg=1,...,s. Finally, in
2 . . . Y
order to determine the coefficients a;; of the truncated éhebyshev series expansion, we will

use collocation.

For collocation points we consider, as usual, the Chebyschev points ¢, = § (cos (%) + 1) ;D

O,...,nandxg:%(cos(%) +1), £=0,...,m.
The coefficients a;j, @ = 0,...,n, j = 0,...,m, of the discrete solution are then
computed by imposing that w, (2, t) satisfies the multi-term equation (3.22) at the collo-

cation points (z¢,tp), ¢ =1,...,m—1,p=0,...,n—1:

1$ Bi+1) & & L (Pl g fatd
b e (BEY) S St 3wl

=1 . Bg+14 7=0 Bg+1
q =122 J k=["L]

n m J
Z Z a;j T, i(tp) Z w]‘;yib'z_Q + f(xe, tp). (3.23)
i=0 j=2 y=2

On the other hand, we insist that the approximate solution, u, y, (2, t), satisfies the bound-
ary and initial conditions at the collocation points placed at the boundary of the domain

[0,b] % [0, a]. Thus, using the fact that the shifted Chebyschev polynomials satisfy T}, ;(0) =
(—1)7 and T}, (1) = 1, the coefficients a;; that define the approximate solution (2, t)
of w are such that it satisfies the system of equations (3.23) together with

SN 4y Tuilty) (—1) = do(ty), (3.24)

i=0 j=0
> aiiTailty) = du(ty), (3.25)
i=0 j=0
O ai(=1)'Ty j(xe) = go(we), (3.26)
i=0 j=0

p=0,....n—1,£=0,...,m.

This way, we have (n + 1) x (m + 1) unknown coefhicients a;; and (n + 1) x (m + 1)
equations.

Remark: For the particular case of the Time-Fractional Diffusion Equation, we have to
solve
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U (2,8)  0tUnm(z,1)
9o = 92 + f(z,1). (3.27)
Subs(tituti;lg Eqgs. (3.18)-(3.21) into Eq. (3.27) we obtain the following approximation of
Eq. (3.27):

n m i n m 7
S S aiTi(e) Y wl e =373 a4y Tui(t) Y wina? 2 4 f(a,t). (3.28)
y=2

i=[a] =0 k=[a] 1=0 j=2

Using the previsous collocation method we arrive again at a system of (n+1) x (m+1)
equations with (n + 1) x (m + 1) unknown coefficients a;;.

3.6 Error Analysis

Let u(x,t) be the exact solution of problem (3.1)-(3.3), up m(z,t) the truncated series
representation of u, given by (3.11), and denote by G;; the solution of the linear system of
equations (3.23)-(3.26). Let us define the approximate solution obtained with the method
described in the previous section as

an,m(xa t) = Z Z dijTa,i(t)Tb,j (.’E)7 (CL’, t) € [07 b] X [07 a‘]' (329)
=0 j=0

In Theorem 3.4.2 an error bound for the norm of the difference between the exact so-
lution, u(z,t), and the approximate solution tu, ,(x,t) corresponding to the truncated
Chebyshev series has been provided. In the numerical method described in the previous
section, we have also replaced the time-fractional and the space derivatives of u by the time-
fractional and the space derivatives of w,, ,,. We begin this section with some auxiliary
lemmas presenting error bound estimates for these approximations.

We can then use the results in the previous section, namely Theorem 3.4.1, Theorem 3.4.2
and Remark 3.4.1, to obtain some upper bounds on the approximations considered here.
From Remark 3.4.1, the following two Lemmas are straightforward to obtain.

4
Lemma 3.6.1 Ifu(x,t) and at least the following partial derivative 5 au 3 are continuous on
x
J, then: ,
0 u
H(I - Pn,m) @ . S Aanxa
where App, and My are defined according to Remark 3.4.1.
3
Lemma 3.6.2 Ifu(x,t) and at least the following partial derivative 2oL continuous on
b
J, then:
ou
H(I - Pn,m) ai S Aanta
t o0

where App, and My are defined according to Remark 3.4.1.
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Taking into account the definition of the Caputo derivative of order « of a function u,
which for 0 < o < 1 reads

0%u(t,r) 1 t _,0u
oz T(1—a) /0 (t=s) a(%s) as,

and Lemma 3.6.2 we obtain the following result:

3

Lemma 3.6.3 Ifu(x,t) and at least the following partial derivative ﬁ are continuous on
x
J, then:
0%u
I_an Y <MaAnm7
- G| <
Mt al—a
ith My = ———————.
with T1—a)1-a)
Proof3.6.1
0%u 1 t ou
I1—Pyy) — < t—s) (I —Pym)—=1| d
=P 5 B et Lt (i >85Hm s
MtAnm ! —
< o—— [ (t—s)%d
= r(1—a)/0( s) " da
My Apm, o M Apn, al—e
< < .
T 1-al(l-a) - 1-a)l(l -«

Before we present our main result in this section, we prove some auxiliary results.

Proposition 3.6.1 The linear system of equations (3.23)-(3.26) can be equivalently written in
the matrix form

Az =B, (3.30)

where A is invertible, B is the vector with the corresponding error for each one of the equations
given in system of equations (3.23)-(3.26), z is the vector with components (4 — a;j), 1 =
0,...,n, 7=0,...,m, and the following estimate holds

I[ai; — aijlll < Cr(1R(s, 2, 1) || + [[E(n,m, 2, 1)) (3.31)

where ||-|| denotes the maximum vector or matrix norm, R(s, x,t) is the error of the used s-point
quadrature rule, and

s Bqt1
E(n,m,z,t) = %quc <Bq; 1) (I —Poym) (%u(w,t)) (3.32)

q=1
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Proof3.6.2 Let us define:
le} 2

1
Ly(u(x,t)) = /0 c¢(a) @u(x,t)da — Wu(x,t),
s ﬂq;l 2
Lo(u(z,t)) = %quc <5q2+ 1) %u(m,t} - %u(m,t). (3.33)

q=1

Note that the collocation equations (3.23) can be written as

Li(u(ze, tp))

Lo (tn,m (e, tp)) = f(@e,tp) =
p)) — La(u(ze, tp)) + La(u(ze, tp))

& Lo(tnm(we,tp)) = L1(u(xe, t
— Lo(unm(ze,tp)) + Lo(tnm(ze, tp))
(=1,....m—-1, p=0,...,n—1. (3.34)
and then
Lo((Unm — unm) (@, tp)) = [L1(u(ze, tp)) — Lo(ulze, tp))]
+ [La(u(@e, tp)) — Lo(unm(@e; tp))]
(3.35)

t)) corresponds to the error of the used s-points quadra-

1t is obvious that L1 (u(x,t)) — La(u(z,
ture rule, say R(s, x,t), and then (see []96])

B B ((s)!)4 %G
[‘Cl( (xla )) 1:2( (ﬂl'g, ))] - R(87$€7t1)) - (28 + 1)((28)')4 80428 (eaxea tp)
T 9%G
Eﬁ(e, Zy, tp)7 0 (S [0, 1], (336)
where the function G is defined by
a+1l
1 atl
Gla,z,t) = ¢ (0‘; > ;%1 u(z, 1), (3.37)
On the other hand,
(3.38)

[52( (va )) - LQ(umm(l‘fvtp))} = E(na m, vatp)'
Substituting (3.36) and (3.38) in (3.35), we conclude that the collocation equations (3.23)

can be written as:
Lo((tnm — Unm)(ze,tp)) = R(s,z¢,tp) + E(n,m, x4, tp). (3.39)

Taking into account the boundary and initial conditions ((3.2) and (3.3)) and equations (3.24)-
(3.26) we have that:
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3 (o~ )P Tly) = (i — ) O,1p) = (1= )0, 1)
o = (I —Pym) (u(0,ty,)) = E(n,m,0,t,) (3.40)
o~ )T = () ) = (1 ) B 1)
o = (I — Pym) (u(b,ty)) = E(n,m,b,t,), (3.41)
S ot — ) ()T (e0) = G — i) (20,0) = (1 — ) (52:0)
2

(I - Pn,m) (u(z¢,0))
= E(l’g,o) (nv myl'E)O)y (342)
p=0,....n—1,0=0,...,m

Then, from (3.35) and (3.40)-(3.42) it follows that equations (3.23)-(3.26) may be rewritten in
the form (3.30), where the matrix A is given by (3.45) with

Bg+1\ ;. (Bg+l
ZZ <5‘1+1>w£k2 >t’; (% >, (3.43)

q=1 k=1

and
BY = Z”m a2 (3.44)
,and, vector B is given by (3.46) (with R:Z’tp = R(s,xy,tp) andEu’ P = E(n,m,xzq,tp,)).

1t can be checked that A is an invertible matrix if the collocation points are all distinct. We
have verified it computationally for several values of n and m.

0 0 STiOBst . TBR TypAR TiiAw T3 AR — T(f‘.’n B3 Ty, Al = 1o, By
it L — Cn— — — L — r T
0 0 “TBy" T STOBT AR LAY — T;‘;,B2 Lo T AR TR B
0 0 —TOBD . —THBI .. T;;,A' T“A" T“A" T;ynB;" TR AL -Th B
it 'm it L. L L L En. 1
0 0 *Tn.UUB; Yo =T Bm R T;[‘ ‘A" Tbl.l ‘Ail‘ T[;L,z ‘A:L‘ - T,;an; ' T;m ‘A" T,:‘nB[ '
T oot o1 ptno @y gt 1 ptno1 it o - S
0 0 TUCUBE . STUUBE T A T Al AL T BRI AL Tl B
0 0 ST STBET TEpabt T A Ty A TR B LTI AL T B
it it 't 't
T —Tao T G A Tatn *Tu"n Tatn (=0)m1zs,
o ot : . e it -
’uoi ”‘;.ol IuOI (= U”;’ o Tai! Tl T (~1)"
't 1 1 't
Tn“n T.% Ta“n - Too e T T Tnnn - Tan
t— o o o o o tn o
T, To! 5" T e Tan" Tai! Tain! Ton"
o) o) o) ) ne1 o e o
Tb() Ty Tys Tom (G R G (=1)"T; (=),
P - p— o — — o — ——
L Ib,n T} 1,5 Ty e (=1)"T,g (=), 7 (=)"T,5 (=1)"Tym

(3.45)

x1,t0 x1,to T 1,to T 1tn—1 0,to 0,tn—1
Ry +En,m 5oy Rs™ "FE mo Enmv---7En7nT’LL )

Eb,to Eb tn— 1 Eﬂfm El'?rw (346)

Ty 2oy N,y -
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Being A an invertible matrix, then

2l = [llai; —aigll - < AT (IR(s, e, tp)|| + |1 E(nym, ze, 1))
< CL(IR(s, 2, t)]| o + [[E(n,m, @, t) ) -
Proposition 3.6.2 Let u be the solution of the problem (3.1)-(3.3). If
« G(a,z,t) € C?%(|0,1)) (regarding the first variable o), for fixed (x,t) € [0,b] x [0, al,
with G defined by (3.37), and s coming from the s-point quadrature rule,

3 4 .
o u(x,t), at%iuax and % are continuous on J,

then,
”un,m - an,mHOO S C(4 (478 + Anm) 3 (347)

where Ay, is defined according to Remark 3.4.1.

Proof 3.6.3 Note that since || T ;|| < 1 and ||T} ;|| < 1 we have

n m
S by — aiy

|t m — Un,m”oo < 1 T4,q |oo T, S [@i; — ai,j]”l
=0 j=0
< O @i — aiglll o
< C*CL(|R(s, 2, 1) || o + 1 E(nym, 2, t)]| ) -

Under the conditions on the function G, from (3.36) it follows

max  |R(s.x.0)| = [|R(s,2,0)], < 2

. 3.48
(z,t)€[0,b] x[0,a] — 4s ( )

On the other hand, taking into account Lemmas 3.6.1 and 3.6.3 we easily come to the conclusion
that
[E(n,m,z,t)|lo, < C3Anm. (3.49)

Hence, the result is proved with Cy = max{Cy, C3}.
Defining the error function,
enm(z,t) = u(x,t) — Uy m(x, 1),
we finally present our main result of this section.

Theorem 3.6.1 Assume that all the conditions of Proposition 3.6.2 are satisfied. Then
Hen,mHOO S C (475 + Anm) . (350)

Proof 3.6.4 First note that:
||€n,mHoo < lu— Un,mHoo =+ H“n,m - an,mHoo . (3.51)

Under the conditions stated in Theorem 3.4.1 or Theorem 3.4.2 in the case of a smoother solution
(see also Remark 3.4.1), the following upper bound for ||u — wn m ||, can be derived:

lu — tnmll <M Apm C. (3.52)

Taking this and the result in Proposition 3.6.2 into account, the theorem is proved.
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3.7 Numerical Results

In order to analyse the accuracy of the proposed numerical method, we consider the L
errors:

||En,m||00 = ma-x|u(ml>t]) - un,m(mhtj” ) for (‘riatj) € [Ovb] X [O,CL].
2y

5

In order to approximate the integral that defines the distributed order derivative we use
a 3-point Gaussian quadrature formula.

To illustrate the theoretical results, we first consider examples in which the solution
satisfies the required smoothness assumptions in the convergence analysis. Because we can
expect the solution of fractional differential equations to be nonsmooth we also consider
some examples with nonsmooth solutions to check the performance of the present numeri-
cal method in such cases.

3.7.1 'The Time-Fractional Diffusion Equation

In this subsection we consider some examples in order to illustrate the performance and
feasibility of the proposed method for the Time-Fractional Diffusion Equation. We also
compare the results obtained with the Chebyschev method with the results obtained with
the implicite finite difference scheme by Ford et al. [178]. For that we consider the following
two examples (with a regular and a singular solution):

Example 3.7.1

2z (22 — 1)t~ cos(x)
'3 -a)

f(z,t) =t (— —x ((m2 —7) cos(z) + 6z sin(x)) + 23in(x)> ,

with analytical solution given by u(x,t) = t*z (1 — 2?) cos(x), (z,t) € [0,1] x [0, 1].
Example 3.7.2

mx (22 — 1) cse(ma) cos(z)
I'(—a) ’

f(z,t) =t (2sin(z) — x ((:c2 —7) cos(x) + 6asin(z))) +

with analytical solution given by u(x,t) = x (1 — 2°) t* cos(z), (z,t) € [0,1] x [0, 1].

The first example (regular solution) clearly benefits the approximation with Chebyschev
polynomials sinde the analytical solution is made of polynomial and the C'os(z) function.
In order to compare the performance of both methods (finite differences and Chebyschev
collocation methods) in solving the Time-Fractional Diffusion Equation, we show in Table
3.1 the L error, the simulation time and speed-up obtained for Example 3.7.1. We tried
to obtain errors of the same order for the two methods, so that a fair comparison could be
performed.

As we can see, the Chebyschev collocation method is much faster, and, the finite differ-
ence approach becomes impossible to use if high accuracy is needed. Note the speed-up of
~ 60000 (with a higher error obtained for the finite difference method).

The second example (singular solution), presents a typical singular solution of a frac-
tional differential equation. Again, we compared the performance of both methods, and
the results obtained are shown in Table 3.2.
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Table 3.1: Numerical solution of Example 3.7.1 using the implicit finite difference and
Chebyschev collocation methods. The results are presented in terms of Lo error, the sim-
ulation time and speed-up (SU). We have considered o« = 0.5.

Finite Difference Method Chebyschev Collocation Method
T=nh Lo error time(s) | m=n Lo error time (s) SU
0.0033 5.42-10°° 732.4 6 8.38-10°° 0.2 446.2
0.0017 1.65-107% 22425.3 7 4.61-1077  0.375 59800

Table 3.2: Numerical solution of Example 3.7.2 using the implicit finite difference and
Chebyschev collocation methods. The results are presented in terms of Lo error, the sim-
ulation time and speed-up (SU). We have considered o« = 0.5.

Finite Difference Method Chebyschev Collocation Method
T=nh Loo error  time(s) | m=n Loo error  time (s) SU
0.0125 4.00-107° 5.4 10 4.61-1077 2.8 1.9
0.0063 3.31-107%  40.9 15 1.16-107% 217 1.9
0.0031 2.66-1072 1398.9 20 9.60-107* 95.7 14.6

We have obtained speed-up up to ~ 15, and, we obtained a lower error, which translates
in an even higher speed-up value.

From these results it is obvious that finite differences are a fair method to solve the Time-
Fractional Diffusion Equation (at least the method proposed in this work), but, the high
computation times make it impossible to use when high accuracy is needed. This scenario is
expected to get worse in the case of distributed-order subdiffusion equations, as explained

next.

3.7.2 'The Distributed-Order Time-Fractional Diffusion Equation

First we present the Lo, error obtained for the examples shown below, and then we study in
more detail the examples whose solutions do not satisfy the regularity assumptions required
for the theoretical convergence analysis. Even for these cases the numerical method showed
reasonable results.

Example 3.7.3
6t + tlog(t) — 6) sin(z)
log(t)

with analytical solution given by u(x,t) = t3atsin(x), (z,t) €10,1] x [0,1].

(o) =T(A—a); flat)=" (‘T( e cos<m>) ,

Example 3.7.4

7 ) ) = 32 (15y/7(t — 1)(z — 1)%z + 16t(2 — 32) log(t))

c(a) =T (2 -« = 8log(t) .

with analytical solution given by u(x,t) = tPz(1—x)2,  (x,t) €[0,1] x [0,1].

Example 3.7.5
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Vi(r — 12 (3wt — 1)(z — 1)222 — 8t(5x(3z — 2) + 1) log(t))
4log(t) ’

with analytical solution given by u(x,t) = 32221 — z)4,  (x,t) € [0,1] x [0,1]. Note
that in this case the solution does not satisfy the smoothness conditions required in the convergence
analysis of the method described in the previous sections. Even so, we ftested the method in this
example and in the next section we compare the obtained numerical results with the ones obtained
with the finite difference scheme in [178] (Note that this example does not satisfy also the regularity
assumptions demanded in the convergence analysis in [178]).

f(.%‘,t) =

Enm [l

n =m || Example3.7.3 Example 3.7.4 Example 3.7.5

1 3.142-107! 1.481-1072 2.193-1072
3 3.469 - 1073 3.313-107* 1.297-1072
5 8.382-107¢ 2.397-107° 1.207-1073
7 1.275-1078 4.761-1076 1.059 - 107°
9 1.020-1071  1.429.107° 4.473-1076
11 3.709-107  4.402-1077 1.685-10°°

Table 3.3: 'The errors ||Ej, ;|| oo, for several values of n and m, from Examples 3.7.3, 3.7.4
and 3.7.5.

In Table 3.3 we list the Lo, errors obtained with the proposed method, for examples
3.7.3, 3.7.4 and 3.7.5, with several values of n and m. It can be observed that the error is
smaller for the biggest values of m and n, that we consider. Thus, the overall errors can be
made smaller by adding new terms from the series (3.11) that approximate u(z,t). This
leads us to the conclusion that the convergence of the method can be observed even if the
solution does not satisfy the regularity assumptions required for the convergence analysis.

However we observe more accuracy and faster convergence for the examples whose so-
lutions are more regular. For example 3.7.3 the solution is C°°([0, 1]), and therefore, the
rules dictated by the convergence analysis presented before can be applied and we observe
that is possible to reduce the absolute error to very small values (~ 10~1%) with a reasonable
number of terms in the double Chebyshev series.

In Figure 3.2 we present the absolute error for the Chebyschev series |u19,10(, )| obtained
for the examples 3.7.3, 3.7.4 and 3.7.5. As we expected the absolute error is smaller for the
solution that presents more regularity.

Let us consider a final set of examples whose first derivative with respect to time is not
defined at ¢ = 0. Since estimates for the error, when the solution is non-smooth at ¢ = 0,
are not available in the literature, we have performed a large set of computations considering
solutions with an increasing degree of singularity (d).

c(a)—l"<dji—1—a>;

1) (@—1)222D( 4L
(x —1)? <(t Sl li;?t;r( ) 2t(5a(3z — 2) + 1))

f(l',t) = d/d+1 »

Example 3.7.6
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FiGure 3.2: Plot of error function |u(x,t) — u10,10(x,t)|. Left: Example 3.7.3. Center:
Example 3.7.4. Right: Example 3.7.5.

with analytical solution given by u(z,t) = Y41 — )2, (x,t) € [0,1] x [0,1]. The
Jollowing set of values for d were considered d = {1,2,3, ...,9,10,12, 14, 16, ..., 28, 30}.

The error ||E, ||, obtained is shown in Figure 3.3. It can be seen that the error
decreases asymptotically with the increase of 1/d, and that a slow convergence is obtained
with the increase of m = n. Although slow, convergence can be observed, even for the
most critical case.

1.8E-02

1.6E-02

©m=n=5

1.4E-02
12E-02 |
'
1LOE-02 Tae ™
[Enl, 5% 30
8.0E-03
6.0E-03

4.0E-03

2.0E-03

0.0E+00

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

1/d

F1GURE 3.3: Variation of the error || Ey, || ., with an increasing degree of the singularity.

3.7.2.1 Comparison with an Implicit Finite Difference Scheme

The method presented in this work was compared with the implicit numerical method
proposed for these problems in [178]. For the numerical method proposed in [178] we
consider a finite difference scheme of order 2 — « to approximate each fractional derivative,
the midpoint rule (with stepsize h) to approximate the integral and a finite difference scheme
of order 2 to approximate the second derivative in space. All the numerical experiments have
been coded in MATHEMATICA and run on a personal computer with processor Intel(R)
Core(TM) i5, 2.60 GHz under operating system MICROSOFT WINDOWS 8.1.

In Tables 3.4 and 3.5 we list the maximum of the absolute errors in the points of the
considered time and space mesh, that is, points (z;,t;), where z; = Az, t; = jAt, being
Az and At the space and time stepsizes respectively.
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Implicite finite diff. scheme Chebyshev Expansion
At h=Ax m=n=5| m=n="7 m=n=9
1] CPU 1] 1] IE]

0.25 0.5 5.06 - 1073 0.010 8.402-107% | 1.275-10~ 9.431-107 12
0.0625 0.25 1.60- 1073 0.875 7.440-1076 | 1.275.107% | 9.431-10"'2
0.015625 0.125 2.80- 1074 74.766 7.440-107% | 1.275-107% | 9.431-107'2
0.00390625  0.0625 | 4.97-107° 4938.58 8.225-1076 | 1.275-10~% | 9.7358 - 1012
CPU: 6.828 | CPU: 37.281 | CPU: 125.031

Table 3.4: Maximum of errors (|| E||) and running-time (CPU) in seconds, obtained for

Example 3.7.3.

Implicite finite diff. scheme Chebyshev Expansion

At h=Ax m=n=5| m=n=7 m=n=29

1] CPU 1] 1] 1]
0.25 0.5 8.40-1073 0.016 1.007-1073 | 2.054-107% | 6.001-10""
0.0625 0.25 2.45-1073 0.734 1.074-1073 | 5.705-1076 | 2.199-1076
0.015625 0.125 | 6.36-107* 70.75 1.074-107 | 1.048-107° | 5.071-107¢
0.00390625  0.0625 | 1.62-1074 5347 1.185-107% | 1.05-107° 5.338-1076
CPU: 4391 | CPU: 21.531 | CPU: 72.766

Table 3.5: Maximum of errors (|| E||) and running-time (CPU) in seconds, obtained for

Example 3.7.5.

We also compare these results with the ones obtained with the proposed method (con-
sidering several values of n and m), by computing the maximum of the absolute errors in the

same mesh points where the absolute errors for the finite difference scheme were computed.
The computational cost of each method is also presented.

From the results listed in Tables 3.4 and 3.5, we observe that with the method proposed
in this work we can obtain an approximate solution with more accuracy and, by looking at

the relative CPU times, with a lower computational cost.

Iog(

En,m

10 f
L)-15

20 |
25 L —Example 3.7.3
r ---Example 3.7.4

230 | ---Example 3.7.5

_35:““w““w““

0 2 4

F1GURE 3.4: Variation of the logarithm of the error || Ey, 1|, with m = n, for Examples

3.7.3,3.7.4 and 3.7.5

The experimental convergence order of the method can be seen in figure 3.4. As ex-
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pected, the convergence slows for the less regular solutions.

3.8 Conclusions

In this chapter we have presented a new numerical method for the solution of distributed
order time-fractional diffusion equations, based on the approximation of the solution by a
Chebyshev truncated double series, and the subsequent collocation of the resulting discre-
tised system of equations at suitable collocation points. We review the existing papers on
the subject of numerical solution for this type of equations, and, we also present a detailed
error analysis for the proposed numerical method.

'The error analysis assumes a certain regularity of the solution, that is not always verified.
'This fact is explored and numerical tests are performed in order to evaluate how the method
behaves with highly singular solutions. It was always observed convergence.

Up to now we have improved the issue of demanding computations, but, the regularity
of the solution was not properly addressed. In the next Chapter we present a new numerical
method that can deal with both the computational eftfort and the potential singularities of
the solution.



Nonpolynomial Approximation Methods: a fast
numerical approach for singular and smooth solutions 4

4.1 Introduction

In the previous Chapters we were concerned with the applications of fractional calculus
to real world phenomena, and we have not presented a proper method to deal with the
potential singularities of the solution.

In order to solve this issue the group developed the work L.L. Ferrds, N,J. Ford, M.L.
Morgado, M. Rebelo, A Numerical Method for the Solution of the Time-Fractional Diffusion
Equation. B. Murgante et al. (Eds.): ICCSA 2014, Part I, Lecture Notes in Computer Science
8579 (2014) 117-131, where it was provided a generalization of the nonpolynomial method
(derived by Ford et al. [83] for fractional ordinary differential equations - N.J. Ford, M.L.
Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differen-
tial equations, Fract. Calc. Appl. Anal. 16 (2013) 874-891) to deal with the Time-Fractional
diffusion equation. The numerical method takes into account the nonsmoothness of solu-
tions, but, the computations are heavy.

Therefore, here we are concerned with the numerical solution of both (systems of) frac-
tional ordinary differential equations and fractional partial differential equations, by address-
ing both the nonsmoothness of the solutions and the high computational effort needed to
solve them numerically. Therefore, we extended the work by Ford et al. [83] to solve systems
of fractional ODE’s, and, at the same time we propose a method to decrease the computa-
tional effort. The methodology developed for systems of fractional ODE’s is then used to
solve the Time-Fractional Diffusion Equation (that is transformed into a system of equa-
tions by using the method of lines). This way we develop a robust method to solve some of
the most used fractional differential equations, to solve physical problems.

The Chapter is organized as follows: we first present a brief description of the method
used in [83] and then develop a new hybrid and faster numerical method for solving systems
of ordinary differential equations. Finally, a new nonpolynomial numerical method for the
solution of the the Time-Fractional diffusion equation is presented and improved. 'The
method makes use of both polynomials and nonpolynomials, decreasing in this way the
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computational effort of the original nonpolynomial method.

4.2 Preliminaries

Consider the fractional ordinary differential equation given by:

Day(t) = f(tvy(t))7 te (07 T]7 (4.1)
y(0) = wo, (4.2)

with smooth initial data and o > 0.

Lemma 4.2.1 [48] Assume that the solution y of (4.1-4.2) exists and is unique on [0, T, for a
certain T > 0. If a = o wherep > 1 and q > 2 are two relaz‘i‘velzprime integers and?f
each right-hand side function f can be written in the form f(t,y(t)) = F(tY9, y(t)), wheref
is analytic in a neighborhood of (0,y(0)), then the unique solution of the problem (4.1-4.2), can
be represented in terms of powers of t1/a:

o

y(t) =Y aptht e 0,r), (4.3)
k=0

wherer < T and ay, k > 0 are constants.

Based on Lemma 4.2.1 we have the following important remark:

1. First, it should be noted that if the order of the fractional derivative « is not of the
form o = &, with p > 1 and ¢ > 2 two relatively prime integers, we can always
replace o with the nearest rational number of this form, since as it has been proved in
[45], the solution of (4.1)-(4.2) depends continuously on the order of the derivative.

2. Second, from the above Lemma it follows that for m € N fixed, the solution of (4.1)-
(4.2) can be written in the form y(t) = y (t) 4+ ) (t), where y") € C™ ([0, T)),
for a certain m > 1, and y®) is the nonsmooth part of y.

Obviously, this result also holds if instead of a single differential equation, we have a
system of multiple equations.

Also, remember that assuming that the right hand-side function f(¢,y) is continuous
on [0, 7] xR, then the differential equation (4.1)-(4.2) is equivalent to the singular Volterra
integral equation:

I _
y(t) =yo + 7/ (t—s)*""f(s,y(s)) ds, t€(0,T). (4.4)
L'(a) Jo
Given m € N, we seek a numerical solution of (4.4) on the /—dimensional space

Vo =span{t", k=1,.,0},

where vy, € {i 4+ ja : 4,5 € Ng,i+ ja < m}. Taking into account the potential non-regularity
of the solution y it makes sense to approximate the unique continuous solution of (4.4) by
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F1GURE 4.1: Schematic of the time partition.
an element of V7, for a certain m € N.

In what follows we will use this information to derive numerical methods for systems
of fractional differential equations and also for the Time-Fractional Diffusion Equation.

4.3 Fractional Ordinary Differential Equations

4.3.1 A Nonpolynomial Collocation Method

In this subsection we will briefly describe the numerical method proposed in [83] for ordi-
nary differential equations.

Consider the time interval, [0,77], is partitioned into N subintervals represented by
oi = (ti,tiv1],9=1,..., N — 1, of equal size 7 (with o¢g = [0, ¢1]).

On each subinterval o; we define ¢ collocation points (Fig. 4.1) t;, = t;+cx, k=1, .., ¢,
where the collocation parameters ¢, € [0, 1].

Let VI, = {v: vl,, €V i=1,.,N — 1}, we seek a function u € V% such that

u (i) = y(0) + I‘(la)/o " (tir. — )27 f (s5,u(s))ds,

i=0,1,..,N—1,k=1,2, ..,0L (4.5)

It will be convenient to introduce the following projection operator

P.:C([0,T]) = V¢,,, defined by:

4
(Prg) () =D Lin(s)g(t), s € o,
k=1
where the Lagrange functions L;;, € V,5 are defined by
E .
Lin(t) =) Biyt™, (4.6)
p=1

where, foreachi = 1,...., N — 1k = 1,...,/, the coefficients ﬁ;k may be obtained by
solving the linear system L;(t;;) = 0ji, k,j = 1,...,£. By definition we have that the

operator Prg(t;x) = ¢(tir). As an approximation of f(s,u(s)), on each subinterval o;
1=0,...,N — 1, we consider
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f(S, U(S) Z'Czk zka ( zk)) (47)
Fors € [t;, tix], i =0,1,.... N — 1,k =1,..., £ we use
4
f(S, u(s)) ~ PTf(S) = Z‘C?'y(s)f(ti + TC,ka,u(ti + Tc'yck))- (48)
y=1
where £F i =0,1,..,N—1,k=1,...,4,v = 1,..., £ are the Lagrange function associated

with pomts ti + TCycp defined 51m11arly to (4. 6) By considering the two previous approxi-
mations of the function f(s, u(s)), we have that an approximation to Equation 4.5 is given

by
1 i—1 ¢ 4 tit1 ) '
v (tir) = y(0) + MZZZ/ (ti — 5)° L5 ds Bl f (L, v(ts)),
j=0 y=1p=1"1
n 1 ii tik(t‘ _ elang
— ik — S) sB f(ti + Teyep, vt + Teyer)) (4.9)
() 22,
By defining the weights
1 /t1+1
wP = — tin — $) tsrds, <1,
k= Ty ), )
t;
wzkp = L/ k(tik —8)* tsds, i =0,1,...,N -1, k=1,..,1,
L(a) Jy,

the previous equation can be re-written as

i—1 / l
1 P 3i
v (k) = y(0) + 15 SN T whPBl f(tie v(tis),
j=0~=1p=1
1 l V4
D nik
+@22wﬂf oS (ti + Teycr, vt + Teycr)). (4.10)

After solving (4.10), an approximation to the solution of (4.5) will be given by

s) ~ Zyjkﬁjk(s), s€oj, j=0,..,N—1.

This numerical method gives a convergence order that is independent of the order cv of
the fractional differential equation, as shown in the following theorem by Ford et al. [83]:

Theorem 4.3.1 Lety be the solution of (4.1-4.2), with f(t,y(t)) = By(t) +g(t), andv € V&
the approximate solution obtained with the nonpolynomial method described before, with a stepsize
7. Then, for sufficiently small T, there exists a positive constant C independent of T such that,
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ly — o], < CT™. (4.11)

The numerical method is robust, and solves the problem of potential singularities. Also,
we have extended the work of Ford et al. [83] to solve systems of ODE’s. The major
drawback of this numerical method is that it is computational demanding. Therefore, in
the next subsection we provide a faster numerical method that works for both Fractional

ODE’s and systems of Fractional ODE’s.

4.3.2 A Hybrid Collocation Method for the Solution of Systems of Fractional
Ordinary Differential Equations

We now present a numerical method for systems of fractional ordinary differential equations
which is able to attain the same accuracy with both smooth and nonsmooth solutions. The
method consists of a nonpolynomial approximation near the origin, reflecting the singular
behavior of the solution near that point, and in the remaining domain, we use a polynomial
approximation. As it is natural and shown later, this reduces the computational effort while
keeping the ability to deal with potential singularities of the solution.

Based on the previous method and taking into account a generalization of Lemma 4.2.1
we present a hybrid numerical method for linear systems of ordinary differential equations:

D%(t) = Ay(t) + F(t), ¢ € (0,T] (4.12)
y(0) = yo, (4.13)
where A is a constant matrix A = [a;;; ;_, ,,andy = [y172... yn]”. The function F

=1,.
can be written as F(¢) = [f1(t) f2(¢)... n(t)]T and yo = [yo1 Yoz - - - Yon] ", Where yo; =
yi(O), 1= 1, N
In this case, in order to approximate the solution of (4.12)-(4.13) we consider a nonuni-

form mesh on [0, 7], as in [80]. Letig be an integer such that (%) « < N and <iojil) BB

N andlet N = N — ig + 1. The partition on [0, 7] is defined through the meshpoints:

. 1\ 2
to =0, t,—z(ZOH) T, i=1,2,...,N' —1, (4.14)
N
and the N’ subintervals:
og = [O,tﬂ, o; = (ti,ti+1], t1=1,2,.. .,NI -1, (415)
with lengths 7; =tit1 —tiy 1 :/0, 1,..., N’ — 1. Let us define the maximum value of 7;

as T =max {7, i=0,1,..., N —1
Note that the integer 4 satisfies the condition

N'Zem <ig < N(N —1)7/m,
and from this inequality we can prove that there exists a positive constant ¢ such that

m—a

7 <clitig—2)"a N a <eNL (4.16)
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Taking Lemma 4.2.1 into account, if near the origin we approximate the solution of
(4.12)-(4.13) with a function spanned by elements of space V,;,, then it will reflect the po-
tential nonsmooth properties of the solution near the singularity. Therefore, we define the
space

S;”([O,T]):{ueC([O,T]): ul, €Vl ul, €Puil, . l:1,2,...,N’—1},

al

where P, is the space of polynomials of degree less than or equal to m — 1 and 03, i =
0,1,...., N' — 1, are defined by (4.15).
The idea of the method is to approximate the solution of (4.12)-(4.13) by a function v such
that v € S7". In order to define v we proceed as follows.
On the first interval of the partition, o, we define ¢ collocation points to; = ¢;70, j =
1,...,4, ¢; € [0,1], and on the remaining intervals oy, [ = 1,..., N’ — 1, we consider m
collocation points t;; = t; + ¢;7, j=1,...,m, ¢; € [0,1].

Noting that each equation of system (4.12) can be written as

yi(t) = yoi + 1“(104)/ (Z aikyr(s) + fi( )) ds, (4.17)

we will then seek for a function v = [vq va...vp]" such that v; € ST ([0,T]), i =
1,2, ..., n, that satisfies

n

vi(toj) = Yoi+ I‘(la) /0 N (toj — 3)‘1*1 (Z a;pvE(s) + fi(s)> ds, (4.18)

k=1
j=1,...,¢

tPJ
vi(tp;) = yo+r(1a)/0 (Zalkvk )+ fil )) ds, (4.19)

p=1,....N -1, j=1,....m

In order to obtain approximations for each vz(toj) i=1,...,n,7=1,...,¢, wedefine
the Lagrange functions, on’ eV, |0 , = L, such that
ﬁoj(t()k) =0, k=1,... . (4.20)

Then, we can write
vy
‘COJ Z ﬁ]zt

where, for each j = 1,...,/, the coeflicients 3;; may be obtained by solving the linear
system (4.20).
It will be convenient to introduce the following projection operator

P, C(]0,T)) — V%LTO, defined by (see [80]):

ZEOk tOk s€og= [0,7’0}.
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Hence, for ¢ € op, we use the following representation for v; € VTO,‘L|UO, i1=1,...,n:
l
= Z vi(tox) Lok (t)- (4.21)
k=1
On the remaining subintervals of the partition, 0, j = 1,..., N’ — 1, each y; will be
approximated by v; € Py,_1:
m
vi(t) =Y Liy(tviltyy), te€ oy, (4.22)
v=1
where Lj,j=1,...,N' =1,y =1,...,m, are the Lagrange polynomials associated with
the collocations pomts tjy = t +7; CA,, defined by
T ot—t
Liy(t) =] —2. (4.23)
i tiy — tjp
PFY

We also define the operators P; : C([0,T]) = Pp,—1 by

m
$)= Ljyg(tyy), se€m,j=1,.,N -1 (4.24)

The values vl(tOk) k=1,.Landv;(ty), L =1,. k=1,..,mwithi=1,...,n,
are obtained by imposing that the functions v;(t ) at the Collocatlon pomts satisfy the 1ntegral

equanons

1 to; n l
vi(toj) = y0i+r(a)/ (toj — D D aip Y vp(toy) Loy(s) + fils) | ds,
0
p= y=1

1

p=1 y=1
-1 L1 n m
+ Z/ (tik — s)* aipZLm(S)Up(tm) ds
=1""% p=1 y=1
1 ik o1 n m *)
+ = / (ti. — ) Z @ip Z Ly (s)vp(ti + Tegey) | ds,
F(a) t p=1 y=1
o e
+ tik —8)* " fi
() Jo
l=1,...,N' =1, k=1 m, (4.25)
where L( 1= 1,...,N' —1,v =1,...,m, are the Lagrange polynomials associated

with the gomts t + Tl c,yck deﬁned 31m11ar1y to (4 23).
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After solving (4.25) and (4.25), the approximate solution of system (4.12)-(4.13), v =
[vi]i, is given by:

¢
> wiltor) Lox(t), t € oo,
B

v;(t) (4.26)

- m
Z’Ui(tjk)ij(t)v teoj, j=1,.. LN —1.
k=1

4.3.2.1 Convergence Analysis

In what follows, we present the convergence analysis of the hybrid method presented
for ordinary fractional order systems. In order to do that, we first introduce some notation
and some useful lemmas.

For each vector x, and matrix A, we denote

lzll = llzl o = max {Jzsl} . Al = | Allog = max > lasg]
i

and for f € C([a,b]) we define the maximum norm of a continuous function defined by

£l 1a,p) :trgﬁ]lf( )E

In the convergence analysis we shall need an auxiliary lemma from [80].

Theorem 4.3.2 Let Loy, k = 1, ..., 4, be the Lagrange functions defined by (4.20) and oy =
[0,t1]. There exists a positive constant Ng such that

[Lokllyy < Do, k=1,...,L (4.27)

Furthermore, givenm € N and f(t) = fi1(t) + fa(t), where f1 € C™([0,T)) and fo € V5,
we have (m)
1 = Prfly, < e |

) (4.28)

g0

for some positive constant C.

We now provide an estimate for the error at the first subinterval of the mesh. For each

Jj =1,...,¢, we analyse the error at the collocation points £o;:
O ! n 1T
60]‘ = [60] er e eOJ] s
where ej; = yi(toj) — vi(toj), i =1,2,...,n.

Lemma 4.3.1 Lety = [yx]}_, be the solution of (4.12)-(4.13), and v = [vi]—, the approxi-
mate solution obtained by the hybrid collocation method and defined by (4.26). On the subinterval

00, we have

- <CN™ 4.
1rgnkaé<n|\yk Vkll,y < C ; (4.29)

where C isa positive constant that does not depend on N.
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Proof 4.3.1 Tuaking (4.17) and (4.18) into account, we have, fori =1,... . nandj =1,...,,

. tog
let;| = lyiltoy) — vilto )] < Fi/ (toj — )" Zlazk! K (s) — vk(s)| ds

(a)

1 « toj o1
= ik lyx — Uk:HUO / (toj — s) ds
(o ) pet 0
< TaiD Z ]y = vill, (430)
Let us now analyse ||y, — Uk”ao, k=1,...,n. First, note that
1t = villoy < Ny = Proill g + I1Pr = vkl - (4.31)

Because we are assuming that yy, k = 1,...,n, is of the form yj(t) = y,gl) (t) + y,gg) (t), where

(1)( t) € C™([0,T)) ana’y,(€ )(t) € Vf,‘vfmm Theorem 4.3.2 we obtain
(1)

lyr — Pryklly,, < e1mg” (4.32)

ik

o0

On the other hand, since vy, € V5, then vy, = Prvy, and therefore, from Theorem 4.3.2, we have

¢
1Pryr = vkllgy < jmax 1L0jll,, > lyk(to;) — vk(to))]
j=1
¢
< Ao lyk(toy) — vkltos)l, (4.33)
=1

with Ao given by (4.27). Using (4.33) and (4.32) in (4.31), we obtain

‘
k= vkllpy < 178" Ca+ A0 Y yn(tos) — vkltop)l, k=1,...,n, (4.34)
j=1

here Cy 1. it tant defined by Cy = (1)
wnere Cq 15 a positive constan ﬁﬁne 7y Cd 121]3%(” dtmyk

Substituting in (4.30), we have, fori =1,... ,nandj=1,... ,é,jo

«

A t0‘ n n J4
et < 2 | erCarg S lainl + 20 Y Jai] 3 ‘e’gj‘
Pla+1) k=1 k=1 j=1

Then, from the last inequality and from the fact that 7o < cN L wherecisa positive constant
that does not depend on N (see [80]), we have

)

4
max |€0]| <CIN™™ 4+ CQZ max
1<i<n 1<k<

n

k
7j=1
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where C and Cy are positive constants does not depend on N. Hence it follows

max max ‘66j| < CIN™™+ (3 max max egj )

1<j<l1<i<n 1<j<l1<k<n

where C3 = £C.
Hence, for sufficiently large N, there exists a positive constant Cy such that

max max |€oj| <COyNTT
1<j<01<i<n

and therefore, from (4.34) we thus obtain

- <Cy N
max [l = vl < Cs

where Cs is a positive constant does not depend on N, and the result is proved .

Let us now analyse the error at the remaining subintervals of the mesh.

Foreachj =1,...,mand k = 1,..., N’ — 1, we analyse the error at the collocation
points ;-
1.2 T
erj = [ekj €hj - ‘32]'] ,
where e}.; = yi(tr;) — vi(tej), i=1,2,...,n

Lemma 4.3.2 Lety = [yx]}_, be the solution of (4.12)-(4.13), and v = [vi]}_, the approxi-
mate solution obtained by the hybrid collocation method and defined by (4.26). On the subinterval
omk=1,...,N' —1, we have

max i —vifl,, < CNTT (4.35)

where C' is a positive constant that does not depend on N.

Proof4.3.2 From (4.17) and (4.19) we have, for j = 1,...,mandk =1,...,N' —1:

i 1 "
ey = viltry) — v (t’“j)zl“(a)/o (trj — 5)° Z‘W u(s) —ui(s)) ds

+ Z/w by — )" 12% (Wi(s) = Py (w)(s) + Py (n)(s) — wi(s)) ds +

1

Y] /:J (try — )" ; air (yi(s) — Pr(yr)(s) + Pe(wn)(s) — vi(s)) ds,

where Py, vy = 1 .N" — 1, is the interpolation opemz‘or daﬁned by (4.24).
Since 7; < cN (see (4. ]6)) we have, fork = 1,.

tyt1
/ (tij —s)* Mds <er®(k—y)* ' <a N k-, y=1,..,k—1,
t

~

/ (tk] - 3)a_1d$ < cT® < Cl N_a’ j = 17 ey m,

173

where €1 is a positive constant does not depend on N. On the other hand, since vy € Pp,_1 then
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Py(v)(s) =v(s), s €1y, o=1,..,N' —1, and hence fors € 0y, v =1,2,..,N' — 1

we have

m

Po(yn)(s) = vils) = Y Lyj(s) (wityy) = wity;)), o = 1,.., N' = 1.

J=1

Then, taking modulus and using the above bounds we obtain

. 1 n t B
ek < *F(a);wiﬂnyl—wn@ /O (b — )*~1ds

1 n k—1 tyt1 .
S a3 v - By, / (b — )2 ds
o) = y=1 L

~

n

1 th
+ — air) lly — Pe(mi U/ te; — ) tds
e 2o ol = Feloll [ s

mAmcl 1 I
+ () Z|a’l|z (k—7)" ??m‘ew‘

p=

mA T
+ Z|a”| nllax ‘ef,cp

(4.36)

where Ny, is the Lebesgue constant associated with the collocation pammeters Clyeey Cme
From Theorem 4.3. 2f0110‘ws lye —vill,y < CNT™ 1 =1,...,n. Let us now investigate

what happens with ||y, — (yl)||aw, l= 1 Ln,y=1,... 7N -1

From the classical interpolation theory and because, as mentioned earlier, 7, < ¢N -1 =

1,...,N' — 1, we have

dmy m a—m myia—m
o= Pr(o)l,, < i x| G 0] < o e < e
-1 % (a=m)
= dyr (“”Z\”f) 437

where we have also used the argument in [199] that says that (Z[ a certain 7gzma‘zon f for which

f&) = fi(t) + fa(t), where f1 € C™([0,T]) and fo € V.5, then ‘f < ct*™™ for
t>t.
Using estimate (4.16) stating that T; < c (i + 19 — 2)a " INT o, we easily achieve the estimate
||yl_P'Y(yl)||o',Y SE?N_mv Y= 15"'7N,_17 (438)
Jfor some positive constant Ca that does not depend on N.
Using the results (4.3.1) and (4.38) in (4.36), for N sufficiently large,follows
k—1
—1
max | max |ekp| < COyN™™ + CO3N~ ;(k‘ - ) Jmax | max ‘ , (4.39)

where Co and Cs are positive constants. Applying a standard weakly singular discrete Gronwall
inequality, leads to the following result

max  max |ekp| <COyN™™ (4.40)
i=1,....,n p=1,.
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On the other hand, uszng the znierfalatwn error (4.38) and definition of the interpolation operator
P, we obtain, for v = LN =1,

max |lyp — vk|| <N+ mA,, max max ‘e;‘;j‘ , (4.41)
k=1,..,m k=1,...nj=1,...m
and therefore, from (4.40) we thus obtain fork =1,...,n
||’y1€—1)1€‘|mY SC’{,N_m, ¥ = 1,...71\7/7 (442)

where 6'5 is a positive constant does not depend on N, and the result is proved.

4.3.2.2 Numerical Results

In order to illustrate the feasibility of the method, some examples for which the analyti-
cal solution is known are presented together with a comparison with the hereafter designated
by nonpolynomial method.

'The numerical error is measured by determining the maximum error at the mesh points ¢;:

= () — vt 4.43
€ an,a’fnp—l,N‘y() vi(tp) (4.43)

)

where v; is the approximate solution, for the i-th spatial function, obtained by the hybrid
method.

Example 4.3.1

whose analytical solution is y(t) = E j2(0.5\/t), and
Example 4.3.2

{ Dyi(t) = y2(t)

a a 7 ese(ma)tt = 7t cse(ma (444)
Doy(t) = =y (t) — () + 17 + SR + T,

_ t1+a

y1(0) = 0, y2(0) = 0. The analytical solution is given by y, (t) = and y2(t) = ma(a +
1)tcs

1)t eslna) /E(1 ).
For the numerical solution of example 1 we consider the spaces V', V', V', V&, V§'.
From Table 4.10 we observe that the nonpolynomial method provides a better convergence
rate for smaller stepsizes, but, the speed-up (SU - ratio between the nonpolynomial and
hybrid computational times) obtained with the hybrid method is really high (upt to 450x).
Note also that the maximum and minimum condition number of the matrices involved
(k(A) = || 4] Hff1 HOO) obtained for each simulation show that the hybrid method pro-
vides better conditioned matrices. Although the £(A)pqs looks similar for both methods,
it should be remarked that right after the first time-step we obtain the value of x(A)pn
for the hybrid method, while for the nonpolynomial method the x(A) is slowly decreasing
along time-steps. For m = 4 it was impossible to obtain convergence for certain values of
N in the nonpolynomial method. The number of significant digits lost along the iterative
procedure lead to badly conditioned matrices. For the hybrid method that problem could
be solved by increasing the number of significant digits.
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Table 4.1: Hybrid and nonpolynomial collocation methods for example 4.3.1 with three
different values of m: values of the maximum of the absolute errors at the mesh points, the
experimental orders of convergence p and speed-up (SU).

Stepsizes hybrid(m = 2) nonpolynomial(m = 2)
N N’ Er P SU H(A)m”, N(A)maz Er p H(A)m”, N(A)'m,az
10 5 1.47-1073 — 10.2 1.19 16.9 5.70 -10—° - 4.92 26.87
20 11 | 445-107%* 1.72 525 1.09 9.58 1.42-107%  2.00 3.56 16.84
40 25 | 1.21-107% 1.88 1149 1.04 5.33 3.56-1076  2.00 2.70 10.71
80 54 | 3.15-107° 1.94 175.7 1.02 3.69 8.90-10~7  2.00 2.14 7.01
160 116 | 8.05-107% 1.97 156.5 1.01 2.67 2.23-1077  2.00 1.78 4.78
Stepsizes hybrid(m = 3) nonpolynomial(m = 3)
N N’ er P SU K(A)min  K(A)maz er P K(A)min k(A maz
10 4 5.01-10"1 — 39.9 1.47 135.5 1.50-1077 - 3.36 115.52
20 8 7.65-10° 271 2703 1.23 88.04 1.50-10710 333 2.44 59.97
40 19 | 1.05-107° 2.86 363.0 1.10 35.42 1.60-10~11 323 1.93 32.45
80 42 | 1.39-1076 2,92 4507 1.05 19.43 1.80-10~12 3.6 1.62 18.37
160 92 | 1.78-10"7 296 406.4 1.02 11.15 2.07-10~1 312 1.42 10.93
Stepsizes hybrid(m = 4) nonpolynomial(m = 4)
N N’ er P SU K(A)min  K(A)maz er P K(A)min k(A maz
10 3 2.23-10°1 — 67.0 2.14 426.1 3.83-10°13 - 1.48 253.57
20 7 1.77-107°  3.65 122.2 1.38 148.5 1.64-10"14 454 1.31 129.68
40 15 | 1.23-1076 3.84 - 1.18 85.18 — - — —
80 34 | 8.14-107% 3.92 - 1.08 41.44 — - — —
160 76 | 5.23-1079 3.96 - 1.04 21.26 — - — —

Table 4.2: Hybrid collocation method for example 4.3.1 with two different values of m:
values of the maximum of the absolute errors at the mesh points and the experimental orders

of convergence p.

Stepsizes hybrid(m = 5)

N N’ Er p K(A)nwln "‘i(A)wzaz
10 3 2.13-10°° — 3.35 1.05 - 106
20 6 8.51-107  4.65 1.85 5.36 - 10°
40 13 | 2.96-107%  4.85 1.37 2.63 - 10°
80 29 | 9.78-10710  4.92 1.17 1.23-10°
160 64 | 3.16-107 '  4.95 1.08 6.10 - 10%
Stepsizes hybrid(m = 6)

N N’ Er p 5(A)min K(A)maa
10 2 1.38-107° — 128.46  4.81-10
20 5 3.72-107  5.21 14.95 1.07 - 108
40 11 | 6.66-10°2  5.80 2.48 4.79-107
80 25 | 1.16-10"19 5.84 1.63 2.05 - 107

We were able to perform computations up to m = 6 by using the hybrid method. The
simulations were fast and the new method proved to be robust.

Next we consider the second example where a systems of equations is considered.

The numerical method was used to solve Example 2 with m = 4 by considering o =
1/4,1/2,2/3. The error and the experimental convergence order are listed in table 4.3. As
expected we have obtained an optimal convergence order that is independent of a.

We obtained speed-ups that go up to 173x. Note that SU is not provided for the case
a = 1/4 because the simulation time for the nonpolynomial method became really high.

Now that we have shown the feasibility of using the hybrid method for the solution
of systems of ordinary fractional differential equations, we will analise its application to
time-fractional diffusion equations.
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Table 4.3: Error, speed-up (SU) and convergence order (p) obtained for the numerical solu-
tion of Example 4.3.2 [197] using the Hybrid and nonpolynomial collocation methods, for
a=1/4,1/2,2/3.

Stepsizes hybrid(ac = 1/4) hybrid(a = 1/2) hybrid(ce = 2/3)
N N’ er » N’ er P SU N’ er P SU
64 15  211-100% 370 | 26 1.94-10=7 386 56.6 | 32  5.53-10" 390 1422
128 34 1.45-10=7 386 | 59 1.27-10-% 393 510 | 71 3.58-107Y 395 162.4
256 75 9.43-107Y 394 | 128 813-10719 397 522 | 155 2.28-10"'9 397 170.2
512 166 6.00-10710 397 | 278 5.14-10"'1 398 60.0 | 331 1.44.-10 399 1734

4.4 Fractional Partial Differential Equations: the
Time-Fractional Diffusion Equation

In this Section we propose a numerical method for the solution of the Time-Fractional
diffusion equation given by:

0%u(x,t) D 0?u(x,t)

=D,—27 1), , 0<z <L, 4.4
i 02 + f(z,t), t>0, 0<x (4.45)
. h . . -al d' . .
with initial condition u(z,0) = g(2), (4.46)
d bound ditions:
and boundary conditions w(0,8) = uo, (L, t) = ur, (4.47)

where we assume that D, ug and uy, are constants, the order of the fractional derivative
satisfies 0 < o < 1, and the fractional derivative is again given in the Caputo sense, that is:

0%u(x,t) 1 t _a0u(x,s)
o T(1-a) /0 (t=s) Os ds.

The recently published book [200], contains a survey of numerical methods for partial
differential equations, where the time fractional diffusion equation is included. Even so,
there is still a lack of highly accurate numerical methods for the time fractional diffusion
equation when compared to other kinds of equation, motivating us to contribute to this
field. In this work we derive a method that was developed in the work L.L. Ferrds, N.J.
Ford, M.L. Morgado, M. Rebelo, A Numerical Method for the Solution of the Time-Fractional
Diffusion Equation. B. Murgante et al. (Eds.): ICCSA 2014, Part 1, Lecture Notes in Computer
Science 8579 (2014) 117-131 and that can deal with potential singularities of the solution
and also allows fast computations.

The method is similar to the nonpolynomial method shown before, with the main dif-
ference being the use of the method of lines for the numerical approximation of (4.45). ‘The
method of lines (MOL) is a widely known and standard computational approach for solving
time-dependent partial differential equations (PDEs), that proceeds in two separate steps:
first, spatial derivatives are approximated using, for instance, finite difference (FD) or finite
element (FE) techniques. Second, the resulting system of semi-discrete ordinary differen-
tial equations (ODEs) in the initial value variable is integrated in time, ¢. For the integration
in time ¢, we will use here the recent nonpolynomial collocation method proposed in [83].

'The method is later extended to deal with graded meshes and we also consider an hybrid
version where near the singularity the non-polynomial method is used and far from the
singularity we assume the solution can be written as a combination of polynomials.
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4.4.1 A Nonpolynomial Collocation Method for the Solution of the
Time-Fractional Diffusion Equation

In this section we describe the numerical method for the approximation of the solution of
(4.45), (4.46), (4.47). Although throughout the text we will always assume the existence
and uniqueness of the solution, these matters will not be addressed here. For the interested
reader we refer to the papers [142; 143], and the references therein.

As is usual in the method of lines, we first approximate the space derivative. In order to
do that we consider a uniform space mesh on the interval [0, L], defined by the gridpoints

x; = iAx,i=0,...,n, where Ax = —, and we approximate the space derivative by the
n
second order finite difference:
0?u(w;, t) _w(@ig1,t) = 2u(wg, t) + u(wi—1, )
0z (Az)? ’

i=1,...,n—1. (4.48)

Substituting in (4.45), and denoting by y;(t) ~ wu(x;,t), we obtain the following system of
n —1 ODEs:

0°%i(t) _ pyi+1(t) = 24i(t) + yi-1(t)

Hia (Az)? + flxg,t), i=1,...,n—1. (4.49)

Note that from the boundary conditions (4.47), we have yo(t) = o, yn(t) = ur and from
the initial condition (4.46), we obtain:

yl(o):g(xl)7 7’:1?,”_17 (450)

and therefore, the solution of the n — 1 initial value problems (4.49)-(4.50) may be de-
termined by using any initial value problem solver. Here we will use the nonpolynomial

collocation method recently proposed in [83], that may be outlined, in this case, as follows.
For eachn € N and ¢ > 0 we define

y(#) = [yo(®) y2(t) y2(t) .. yn-1(t) yn(t)] = [uo y1(t) y2(t) - .. yn-1(t) uL].
Thus, the system (4.49), (4.50) can be rewritten as follows

0%yi(t) L
e = Bilty(), i=1.. -1, (4.51)

yi(0) =g(z;), i=1,...,n—1,

where each function Fj is defined by

Fit.y(t) = p¥rt) = ?ggﬁ Yirt® | opp) o1 -1 (452)

Hence, we end up with a system of (n — 1) fractional ordinary differential equations to
solve. In what follows we suppose that there exists a 7' > 0 such that the system (4.51) has

a unique continuous solution y on the interval [0, T'].
Again, assuming that the functions F;(s,y(s)) are continuous on [0, T, the system of
equations (4.51) is equivalent to a system of Volterra integral equations of the second kind

[60]:

yi (1) = vi(0) + = /Ot(t —8)* L E(s,y(s))ds, i=1,....,n—1, (4.53)
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where 3;(0) = g(z;),i=1,...,n— L.
We will use the non-polynomial collocation method, recently proposed in [83], to approxi-
mate the solution of (4.53) and, consequently, the solution of the system of ODEs (4.51).

Although the method was described in the first Section of this Chapter, we will now
adapt the method to this type of system of equations, and therefore, some concepts will be
repeated.

Again, the time interval, [0, 77, is then partitioned into N subintervals, o9 = [0, to],
oi = (ti,tit1], @ = 1,...,N — 1, of equal size h. On each subinterval o; we define ¢
collocation points t;;, = t;+c,At, k = 1, .., ¢, where the collocation parameters ¢, € [0, 1].
We seek a vector solution,

u(t) = (u1 (xl,t) , U2 (1’2,15) y eeey Up—1 (l’n_l,t)) (4.54)

such that u; (z;,t) € V%, (j = 1,..,n — 1), which means

L
uj (x5,t) = alt™* teo, i=1,...,n—1
k=1
In order to compute the coefficients a;; = [al, . . ., al,] we impose the condition that the

function u(t) must satisfy the system (4.53) at the collocation points t;:

1 Lik B
@yt = 950 + g [ o= ) () s
i=0,1, .. N1, k=12 .0, j=1,2, ..n—1. (4.55)
For each i we obtain an ¢ (n — 1) system of e?uations. We consider an approximation of

each function F (s, u (s)) on the space VA, ,,, (a detailed explanation of this subject can be
found in [83]). The approximation u € V5 ,,, is such that

i—1 £ 4
i (tin) = v (0)+ >3 > wiP B, Fj (b + Atey, i (t + Atey))

s=1vy=1p=1
0 4 . '
+ Z Z wiP B F; (t; + Atcgey, i (t + Ateyey))
y=1p=1
j=1,...on—1,i=0,....N—1,k=1,...,0 (4.56)
where
a,p __ 1 t0+1 t a—1 l/pd . .
wik—mtj (tip — 8) " s"ds, j <1,
7P 1 Fik a—1 _v -
w, = F(Oé)li (ti — )% s"ds, i =0,1,...N -1, k=1,...,¢,

and nyp, nylz, are defined as in [83]. A schematic of the resulting system of equations (when
F; is linear) 1s shown in Fig. 4.2.

After solving (4.56), that is, after having determined for each j = 1,...,n — 1, the
coeficients 4 (t;), 4 = 0,...,N — 1, k = 1,.../, each component of the solution y is
approximated by
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Z,_L £ T _Y1€to1)_
,—Li v )h(to/)
, { .................. yzgtm)

et Yalto)

A yn21(t01)
A o))

F1GURE 4.2: Schematic of the system of equations obtained for each subinterval o; (only
non-zero entries are shown).

l
yi(t) ~ () =Y yh (tiw) Le (), t €03, i =01, .. N-1,j=1,....n—1,
k=1

(4.57)

where yfk = Uj (tir) and Ly, € V5 are the Lagrange functions defined as in [83].
Before presenting some numerical results we remark the following: in [83] it was proved

that the convergence order of the non-polynomial collocation method was m when a solu-
tion of a linear ordinary fractional differential equation of the type Dy(t) = Sy(t) + f(t)
can be written as y(t) = y1(t) + y2(t), y1 € C™([0,T]) and y2 € V,5.

In this work we need to solve a system of (n — 1) linear equations (see (4.51)), and we expect
to obtain the same order m in time when working on V,. Indeed, from Lemma 4.2.1, each
component of the solution y may be written in the form y;(t) = y} (t) 4+ y2(t), for a fixed
integer m, y; € C™([0,T]) and y? € V2.

4.4.1.1 Numerical Results

In order to illustrate the feasibility of the method, some examples for which the analyt-
ical solution is known are presented. The numerical error is measured by determining the
maximum error at the mesh points (z;,t;):

1 L

Capar=  omax o lu(zs,t;) —yi (t;)], N = AT AL (4.58)

where y; is the numerical solution obtained for the i-th spatial function defined by (4.57).
We consider two examples:

Example 4.4.1

°u(x,t)  *u(z,t) T(A+a) 4 3 9 3

Ll ’ 2 — —4 - ta <z <2
5o 922 + 6 x*( x)t x4(6 —bx)t°™, >0, 0<z <2,
u(z,0) =0,

u(0,t) = u(2,t) = 0.

whose analytical solution is u(x,t) = x*(2 — 2)t37%, and
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Example 4.4.2
0Pula,t) _ Pulwt) | 3T(1/2), Yo —1) —4a2(Gz —3)t32, t>0, 0<a<1
otz o2 4 AT T (0T ) , U<x <1

u(x,0) =0,

u(0,t) = u(1,t) =0,

whose analytical solution is nonsmooth att = 0 and given by u(x,t) = x*(x — 1)t3/2.

We will use the method presented in the previous section with m = 1,2,3 and we will
compare the numerical results with the ones obtained with the method presented in [132].

4.4.1.2 Non-polynomial Collocation Method

In this subsection we present the numerical results obtained for these two examples on
« « «
the spaces Vi"x;, V5'a, and Vi¥p,.
The collocation parameters that we have used are listed below.

* For a = 1/3 we consider ¢y = 0.15, ca = 0.3, ¢c3 = 0.4, ¢4 = 0.5, ¢c5 = 0.7, ¢g =
0.85 form = 2;

* For @« = 1/2 we consider ¢; = 0.25,¢co = 0.5 form = 1, ¢; = 0.15, ¢co =
0.25,¢c3 = 0.5,¢c4 = 0.75form = 2and ¢; = 0.15, ¢co = 0.3, ¢c3 = 0.4, ¢4 =
0.5, ¢c5 = 0.7, ¢g = 0.85 form = 3;

* For a = 2/3 we consider ¢; = 0.15, ¢co = 0.3, ¢3 = 0.5, ¢4 = 0.7, ¢5 = 0.85 for
m = 2;

For each case, the estimates for the time and space convergence orders were computed and
denoted by p and ¢, respectively.

In table 4.9 we present the numerical results obtained, by the described method on the
space V3", for example 4.4.1 for three different values of the order of the time derivative, a.
As expected we can determine p ~ 2 experimentally (not dependent on the order of the
fractional derivative) and ¢ ~ 2.

Table 4.4: Non-polynomial collocation method on the space Vi* for example 4.4.1 with
three different values of v: values of the maximum of the absolute errors at the mesh points
and the experimental orders of convergence p and ¢ related with the stepsizes At and Az,
respectively.

Stepsizes a=2/3 a=1/2 a=1/3
At Ax EAz,AL P=gq EAz,AL pP=gq EAx,AL pP=q
0.5 05 [392-100% — [453-100% — [474-1070 -

0.25 025 | 1.03-1071 194 |1.16-107Y 196 | 1.27-107Y 1.90
0.125 0.125 | 2.61-1072 197 | 292-1072 1.99 | 3.18-1072 1.99
0.0625 0.0625 | 6.54-10~% 2.00 | 7.31-1073 2.00 | 8.00-10~2 1.99
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Approximate solution and u(x,t)

X

FIGURE 4.3: Approximate solution of example 4.4.1, with & = 1/2, obtained with the
non-polynomial collocation method on the space ‘/217(/)_2125 with Az = 0.125. Left: Plot of
the approximate solution. Right: Exact solution (gray /ine) and approximate solution (4/ue
points).

In Fig. 4.4.1.2 (a) the approximate solution of example 4.4.1, with v = 1/2, obtained
with the non-polynomial collocation method on the space V5 195 with Az = 0.125 is dis-
played. Fig. 4.4.1.2 (b) shows the exact and numerical solutions at the points (z, 0.25¢), ¢ =
1,2 ...,4. From Fig. 4.4.1.2 (b), it can be seen that the numerical solution is in good agree-
ment with the exact one.

In Fig. 4.4 we show the absolute errors related with the approximate solution, of ex-
ample 4.4.1, that belong to the space V3, ;95 and obtained by the proposed method. From
Fig. 4.4 it can be seen that the absolute errors obtained for the several values of « are very
similar.

In table 4.5, we present the maximum of the absolute errors at the mesh points and the
experimental orders of convergence, for example 4.4.2, whose analytical solution is nons-
mooth at ¢t = 0. Even so, the expected time convergence order is observed.

Table 4.5: Non-polynomial collocation method on the spaces V;* and V¥ for example 4.4.2:
values of the maximum of the absolute errors at the mesh points and the experimental orders
of convergence p and ¢ related with the stepsizes At and Az, respectively.

Collocation on the space V" Collocation on the space V"
At Az €Az, At p q At Az EazAt D=4
0.25 0.25 2.04-1072 — - 0.25 0.25 2.04-1072 —
0.0625 0.125 5.48-1073 0.95 1.90 0.125 0.125 5.55-1073 1.88
0.0156225 0.0625 1.39-1073 0.99 1.98 0.0625 0.0625 1.39-1073  2.00
0.00390625 0.03125 3.11-107% 1.08 2.16 || 0.03125 0.03125 3.48-107*  2.00

In Fig. 4.5 (a) the approximate solution of example 4.4.2, obtained with the non-
polynomial collocation method on the space V3, o505 With Az = At = 0.0625 is dis-
played. Fig. 4.5 (b) shows the exact and numerical solutions at the points (x,0.25 - 1), ¢ =
1,2 ...,4, and we can observe that the numerical solution obtained by the proposed method
is in good agreement with the exact solution.

In Fig. 4.6 we compare the absolute errors at the points (x,i - 0.25), i = 1,2, ...,4
(bottom to top), obtained by the application of the non-polynomial collocation method on
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£20.25£=0.5t=0.75t=1.0

£-0.25£-0.5£=0.75£=1.0

a=2/3

FIGURE 4.4: Absolute errors for the approximate solution of example 4.4.1, for several val-

ues of «, obtained with the non-polynomial collocation method on the space V30125 with
Ar = 0.125.

2>
LB
T =
AR z 0
XX =
=
£ -0.02
0% c
-0.02 %
-0.04 2 -0.04
-0.06 ;
- <
0.08 £ _006
3
e
=5
& -0.08
0 02 04 0.6 0.8 1

FIGURE 4.5: Approximate solution of example 4.4.2 obtained with the non-polynomial col-

location method on the space ‘/2{6?0625 with Az = At = 0.0625. Left: Plot of approximate
solution. Right: Exact solution (gray /ine) and approximate solution (blue points).
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FIGURE 4.6: Absolute errors for the approximate solution of example 4.4.2 obtained with

the non-polynomial collocation method on the spaces ‘/11’6‘20625 (dashed line) and ‘/'2176.20625
(solid line), with Az = At = 0.0625.

the spaces ‘/1{(/)?0625 and ‘/2{6?06257 and we observe that the error decreases on the second
approximation, as expected.

We present some results for both examples (m = 3 and a = 1/2), which are listed
in table 4.6. As expected, the experimental order of convergence, with respect to the time
variable, is 3.

1
Table 4.6: Non-polynomial collocation method on the space V3?5, for examples 4.4.1 and
4.4.2: values of the maximum of the absolute errors at the mesh points and the experimental

orders of convergence p and ¢ related with the stepsizes At = (Aa})g and Az, respectively.

Example 4.4.1 Example 4.4.2
At Az €Az, AL P q At Ax EAm,AL P q
0.5 05 |434-1000 — — 0.3333 025 |204-1072 — -

0.3333 025 | 1.15-10°" 287  1.91| 025 0125 |555-107% 2.82  1.88
025  0.125 | 291-1072 298  1.98 | 0.1429 0.0625 | 1.39-107% 3.0 2.0
0.01429 0.0625 | 7.21-10% 3.02  2.01 || 0.09091 0.03125 | 3.57-10"* 2.94  1.96

4.4.1.3 Comparison with Other Methods

The method proposed in this work was also compared with other methods available in
the literature. As mentioned in the Introduction, finite difference methods are the most
popular for the numerical approximation of this kind of equation. Here, we compare the
numerical results obtained using the method described before with the ones obtained in the
paper [132], where the author claims first order accuracy in time and second order in space.
'This convergence order can be observed in tables 4.7 and 4.8, where we present some results
of numerical experiments with the method described in [132], obtained for examples 4.4.1
and 4.4.2, respectively, for different values of the stepsizes At and Ax.

4.4.1.4 Conclusions

A new numerical method has been developed for the solution of the time-fractional dif-
fusion equation. This consists of the method of lines combined with a non-polynomial
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Table 4.7: Method in [132] for example 4.4.1 with several values of c: values of the maxi-
mum of the absolute errors at the mesh points and the experimental orders of convergence
q and p related with the stepsizes Az and At = (Ax)?, respectively.

Stepsizes a=2/3 a=1/2 a=1/3
At Az EAm,AL p q EAm,AL P q EAxm,AL P q
1/4  1/2 | 2751070 — - |37-1071 - — | 447-1071 - -

1/16  1/4 | 7.71-1072 092 1.83 | 1.05-10"! 092 1.85| 1.23-10"! 0.93 1.87
1/64 1/8 |2.16-1072 0.92 1.83 |2.76-1072 0.96 1.92|3.13-1072 0.98 1.97
1/256 1/16 | 5.81-107* 0.95 1.90 | 7.10-10™% 0.98 1.96 | 7.95-1072 0.99 1.98

Table 4.8: Method in [132] for example 4.4.2: values of the maximum of the absolute
errors at the mesh points and the experimental orders of convergence ¢ and p related with
the stepsizes Az and At = (Ax)?, respectively.

At Az EAx,At P q
1/16  1/4 | 2.04-1072 - -
1/64 1/8 | 5.55-107% 0.94 1.88
1/256 1/16 | 1.39-10~% 1.00 2.00

1/1024 1/32 | 3.47-10~* 1.00 2.00

collocation method. The method presented here may be extended easily to other types of
fractional PDEs, to problems with different boundary conditions and to equations with
higher space dimension. From the numerical results we can see that the order of conver-
gence of the time approximation is m if the solution can be written as a sum of a regular
function and a function that belongs to the space V& with respect to the time variable. Also,
as expected, the spacial convergence order is 2.

4.4.2 A Hybrid Numerical Scheme for the Time-Fractional Diffusion Equation

In order to approximate the solution of (4.45)-(4.47), using a hybrid method, we just need
to combine the previous Section with the method proposed for systems of Fractional ODE’s.
Therefore, consider on the interval [0, 7] the mesh defined by (4.14). We will then seek for

a function v = [vy v ... vy]" such that v; € 7 ([0,T]), i =1,2,...,n, that satisfies
D [ a1 [(Vi+1(8) = 20i(8) + vi—1(9)
Ui(tpj) = Yo+ F(Oz)/o (tpj - S) ! < 12 + f(xlv 5) ds,

p=0,...,N' =1, j=1,....,m,
where mo = and m, =mp=1,...,N — 1.

4.4.2.1 Numerical Results

In order to illustrate the feasibility and performance of the method we will now compare
the results obtained with the hybrid and classical nonpolynomial methods. The numerical
error is measured by determining the maximum error at the mesh points (x;, ;):

1 L

T N ules,t) =y &), N=Z,n =5 (4.59)
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where y; is the numerical solution obtained for the i-th spatial function and u(z;, t;) is the
exact solution evaluated at points (x;,%;). We consider the following examples:

Example 4.4.3
u(z,t)  Pu(x,t) T@A+a) 4 3 2 3ta
5 = ol 4 G (2 —2)t° —4x°(6 —bx)t T, t>0, 0<x <2,
u(z,0) =0,

u(0,t) = u(2,t) = 0.
whose analytical solution is u(x,t) = x4(2 — z)t3+.
Example 4.4.4

7(x — 1)a* ese(ma) cos(x)

I'(-a)
t>0, 0<z <2
u(z,0) =0,

u(0,t) = u(2,t) = 0.

whose analytical solution is u(x,t) = x(1 — x)t cos(x).

The numerical results obtained for the time-fractional diffusion equation (example 4.4.3)
on the spaces Vi and VY. are now presented and the collocation parameters that we have
used are listed below:

* For @« = 1/3 and the first time interval, we consider ¢; = 0.15, ca = 0.3, c3 =
0.4, ¢4 = 0.5, 5 = 0.7, ¢ = 0.85 for m = 2. For the remaining intervals we have
considered ¢; = 0.25, ¢o = 0.75 for m = 2;

* For @ = 1/2 and the first time interval, we consider ¢; = 0.15, ¢o = 0.25, ¢3 =
0.5, c4 = 0.75 for m = 2. For the remaining intervals we have considered ¢; =
0.25, co = 0.75 form = 2;

* For @« = 2/3 and the first time interval, we consider ¢; = 0.15, co = 0.3, ¢3 =
0.5, c4 = 0.7, ¢5 = 0.85 for m = 2. For the remaining intervals we have considered
c1 = 0.25, ¢ = 0.75 form = 2;

For each case, the estimates for the time and space rates of convergence were computed
and denoted by p and ¢, respectively.

In table 4.9 we show the numerical results obtained by the described hybrid method and
the classical nonpolynomial method on the space Vi* (for example 4.4.1) considering three
different values of cv. As expected we can determine p ~ 2 experimentally (not dependent
on the order of the fractional derivative) and g ~ 2.

We also present the speed-up (SU - ratio between the simulation time of the classical
method and the simulation time of the hybrid method), and the maximum and minimum
condition number (r(A4) = [|A]||A™" ||OO) obtained for each simulation. We observe
that the new method allows one to obtain the same order of convergence with a less com-
putational effort, with the speed-up increasing with the mesh refinement. Note that is

— 2%t%(2z(5z — 4) sin(z) + ((x — 5)x(z + 4) + 12) cos(z)),
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Table 4.9: Hybrid and nonpolynomial collocation methods on the space V5* for example
4.4.3 with three different values of a: values of the maximum of the absolute errors at the
mesh points and the experimental orders of convergence p and ¢ related with the stepsizes
7 and h, respectively.

Stepsizes hybrid(ov = 2/3)
N N’ h Eh,r p=gq SU K(A)min K(A)maw dim(A)
8§ 4 0125 | 317-107° - 45.4 86.7 1.14-107  75/30

16 10 0.0625 | 9.59-1072 1.73  42.8 151.7  2.60-10T  155/62
32 22 0.0313 | 2.53-1072  1.92 2474  281.1  6.57-10T* 315/126
64 48 0.0156 | 6.21-107% 2,02 1421 4948  1.73-10T° 635/254

nonpolynomial(o = 2/3)
N Eh,T P=q KD min
8 261-1072 197 293.-1072
16 6.54-107% 2.00 8.19-10"2
32 1.64-107% 200 220-10"3
64 4.09-107* 200 6.64-10"3

Stepsizes hybrid(ov = 1/2)
N N’ h Ehr p=gq SU K(A)min K(A) mag dim(A)
8 4 0.125 4.16-107 1 — 30.1 101.2 744.3 60/30

16 8 00625 | 1.39-107" 1.58 322 2511 2.36-10%2  124/62
32 19 0.0313 | 3.95-1072 1.81 545 529.1  5.88-10"%  252/126
64 42 0.0156 | 1.03-1072 1.94 167.8 1144  1.67-10"* 508/254

nonpolynomial(o = 1/2)
N Eh,T P=q KA min
8 292-1072 199 227-1072
16 7.31-107% 2,00 6.84-10"3
32 1.83-107% 200 2.04-10"3
64 4.57-107%* 200 6.08-10"3

Stepsizes hybrid(ov = 1/3)
N N’ h Ehyr p=q¢ SU  K(A)min KA mae dim(A)
8 3 0.125 | 5.75-107" — 116 125.1 3.26 - 1076 90/30

16 6 0.0625 | 221-107" 1.38 173 372.6 1.10- 10" 186/62

32 15 0.0313 | 6.90-107% 1.68  629.4 934.0 2.72-1077  378/126
64 32 00156 | 1.92-107% 1.85 1982 2699 8.88-10T7"  762/254
128 71 0.0078 | 5.00-107% 1.94 - 7278 2.86-10™®  1530/510

nonpolynomial(ov = 1/3)
N Eh,r p=49q H(AA)mtn
8 318-107%7 199 5.81-1077
16 8.00-10"% 199 1.66-10T*
32 2.00-107% 200 5.07-10"*
64 5.00-107* 200 1.67-10"°

some cases we managed to obtain speed-ups of 173x. We may also conclude that SU in-
creases with the dimension of the space V. Regarding the condition number, we have
that £(A)maz is the same for both the methods, and, this value is obtained only for the
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first iteration in time. For the hybrid method the value of x(A) for the remaining iterations
remains constant, and is given by #(A)mn. For the nonpolynomial method the x(A) de-
creases along iterations, being its minimum value achieved only in the last iteration. Note
that difference between the £(A)min for the two methods, being the condition number re-
ally low for the hybrid method. This makes this method more robust, since less significant
digits will be lost along the numerical procedure. We also present in this table the dimen-
sion of the matrices obtained for the first and remaining time intervals (dim(A)). This is
denoted by a/b with a x a the dimension of the matrix for the first time interval and b x b
the dimension of the matrix for the remaining intervals (for the hybrid method). It should
be remarked that dim(A) = a x a for the nonpolynomial method (in all time intervals),
making this method significantly slower when compared to hybrid method.

We have tested higher orders of convergence by considering the space V}}/ 2 for example
4.4.3. 'The results are shown in Table 4.10. We observed an experimental convergence order

of O(7™, ) + O(h?).

Table 4.10: Hybrid collocation method on the space V31/ % for example 4.4.3: values of the
maximum of the absolute errors at the mesh points and the experimental order of conver-
gence p related with the stepsizes 7 = (h)2/3 (m=3), and h.

Stepsizes hybrid(a = 1/2) - Vgl/ 2
N N’ h Eh,r D
16 6 0.0156 2.13-1072 —
25 11 0.0078 6.58 - 1073 2.55
40 19  0.0039 | 1.78-1073 2.83
64 32 0.00195 | 4.60-10~* 2.93

Finally, we performed numerical simulations considering Example 4.4.4, that presents
a stronger singularity.

We have considered the space V21/ ? and the results are shown in Table 4.11. Again, we
observe the expected convergence rates.

Table 4.11: Hybrid collocation method on the space V?,l/ % for example 4.4.4: values of the
maximum of the absolute errors at the mesh points and the experimental order of conver-
gence p related with the stepsizes 7 = (h)2/3 (m=3), and h.

hybrid(er = 1/2) - V;/?
N N’ h Eh,T pP=gq
8 4 0.0625 1.75-103 —
16 8 0.0313  4.17-107% 201
32 19  0.0156  1.04-10=*  2.00
64 42 0.00785 2.60-107°  2.00

4.4.2.2 Conclusions

In this work we have a derived a hybrid numerical method that can deal with both smooth
and nonsmooth solutions of the Time-Fractional-Diffusion-Equation. The method uses a
nonpolynomial collocation method in the first time interval and a polynomial collocation
method in the remaining intervals. By using the hybrid method we managed to obtain
numerical solutions that are 173x faster than the ones obtained with the nonpolynomial
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collocation method. The numerical method is robust and also allows one to choose the
degree of accuracy intended to solve the fractional differential equation by setting a different
number of collocation points. We performed numerical tests and observed an experimental
convergence order of O(7/% ) + O(h?).
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Main Conclusions and Discussion 5

5.1 Main Conclusions and Discussion

In this work we have tackled three main problems often encountered in applications of
fractional calculus and numerical methods used to solve fractional differential equations.
These are:

1. 'The existing gap between Engineering and Mathematics that resulted in a not so fun-
damented substitution of classical derivatives by their fractional counterpart, creating
models that allow a better description of real world phenomena, but, that at the same
time change the dimensions of the parameters involved;

2. 'The hereditary properties of the fractional operators that result in slow computations;

3. 'The dependency of the convergence of the numerical methods for fractional differ-
ential equations on the order of the fractional derivative and the nonexistence of fast
and robust methods that can deal with the potential singularities of the solution of
fractional differential equations.

Item 1: We have presented a fundamental explanation on the use of fractional derivatives to
model anomalous diffusion. A numerical method was devised to solve a general fractional
diffusion equation equation, which was proved to be stable and convergent. The method
can deal with the Neumann boundary conditions and the variation of the thermal diffusivity
in space (we prove its convergence (convergence order of O(Az? + At?™%), 0 < a < 1)
and stability). As an example of what is often done in the litterature, we substituted in
the bioheat equation the classical time derivative by a fractional derivative. This lead to the
creation of a new parameter that should be temperature dependent. We managed to obtain a
better fit of experimental results, but, this conclusion should be explained with care. There
is no doubt that the fractional derivative may improve the quality of the model, but we
have added a new modeling parameter, and therefore, we can not say this is a better model
when compared to the classical one. The typical substitution of the classical derivative by
a fractional derivative should be performed with care. First: there should be a physical
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reason for this substitution, and, second: the units of the parameters used in the equations
are changed in the presence of the fractional derivative, therefore we can not used them as
regular properties. Regarding the numerical method, it should be highlighted the fact that
when deriving the proofs of convergence and stability we have assumed certain regularity
properties of the solution that may not be verified in reality. In this cases we are expecting
the order of the method to decrease.

The error analysis assumes a certain regularity of the solution, that is not always verified.
This fact was explored and numerical tests were performed in order to evaluate how the
method behaves with highly singular solutions.

Item 2: We have developed a new numerical method for the solution of distributed or-
der time-fractional diffusion equations, based on the approximation of the solution by a
Chebyshev truncated double series, and the subsequent collocation of the resulting discre-
tised system of equations at suitable collocation points. We reviewed the existing papers on
the numerical solution for this type of equations, and, we also present for the first time a
detailed error analysis for the proposed numerical method.

The error analysis assumes a certain regularity of the solution, that is not always verified.
This fact was explored and numerical tests were performed in order to evaluate how the
method behaves with highly singular solutions. It was always observed convergence, and
the numerical method proved to be faster than the traditional finite difference approach.

Item 3: We have improved the accuracy and robustness of numerical methods for the Time-
Fractional diffusion equation. A new numerical method has been developed for the solution
of the time-fractional diffusion equation that consists of the method of lines combined with
a non-polynomial collocation method. The method presented here may be easily extended
to other type of fractional PDEs, to problems with different boundary conditions and to
equations with higher space dimension. We proved that the order of convergence of the
time approximation is optimal.

Finally, we have derived the most important contribution of this thesis: an hybrid
method consisting of a combination of a non-polynomial approximation on the first in-
terval of the time discretisation and a polynomial approximation on the remaining time
discretisation intervals. This resulted in a much faster numerical method that can deal with
the potential singularities of the solution.

We may therefore conclude that the objectives of this work were achieved. In the future,
the numerical methods can be improved and extended to different types of fractional differ-
ential equations. Also, the creation of different fractional operators that have the memory
properties but that are less computational demanding should be explored.
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