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Abstract

In this thesis we will explore the numerical methods for solving deterministic and

stochastic space and time fractional partial differential equations. Firstly we consider

Fourier spectral methods for solving some linear stochastic space fractional partial differ-

ential equations perturbed by space-time white noises in one dimensional case. The space

fractional derivative is defined by using the eigenvalues and eigenfunctions of Laplacian

subject to some boundary conditions. We approximate the space-time white noise by

using piecewise constant functions and obtain the approximated stochastic space frac-

tional partial differential equations. The approximated stochastic space fractional partial

differential equations are then solved by using Fourier spectral methods.

Secondly we consider Fourier spectral methods for solving stochastic space fractional

partial differential equation driven by special additive noises in one dimensional case.

The space fractional derivative is defined by using the eigenvalues and eigenfunctions of

Laplacian subject to some boundary conditions. The space-time noise is approximated by

the piecewise constant functions in the time direction and by appropriate approximations

in the space direction. The approximated stochastic space fractional partial differential

equation is then solved by using Fourier spectral methods.

Thirdly, we will consider the discontinuous Galerkin time stepping methods for solving

the linear space fractional partial differential equations. The space fractional derivatives

are defined by using Riesz fractional derivative. The space variable is discretized by

means of a Galerkin finite element method and the time variable is discretized by the

discontinous Galerkin method. The approximate solution will be sought as a piecewise

polynomial function in t of degree at most q−1, q ≥ 1, which is not necessarily continuous

at the nodes of the defining partition. The error estimates in the fully discrete case are

obtained and the numerical examples are given.

Finally, we consider error estimates for the modified L1 scheme for solving time frac-

tional partial differential equation. Jin et al. (2016, An analysis of the L1 scheme for

the subdiffifusion equation with nonsmooth data, IMA J. of Number. Anal., 36, 197-221)
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established the O(k) convergence rate for the L1 scheme for both smooth and nonsmooth

initial data. We introduce a modified L1 scheme and prove that the convergence rate is

O(k2−α), 0 < α < 1 for both smooth and nonsmooth initial data. We first write the time

fractional partial differential equations as a Volterra integral equation which is then ap-

proximated by using the convolution quadrature with some special generating functions.

A Laplace transform method is used to prove the error estimates for the homogeneous

time fractional partial differential equation for both smooth and nonsmooth data. Nu-

merical examples are given to show that the numerical results are consistent with the

theoretical results.
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Chapter 1

Introduction

1.1 History of Fractional Calculus

The Fractional Calculus is a generalization of classical calculus concerned with operations

of integration and differentiation of non-integer or fractional order. The idea of fractional

operators has been introduced almost simultaneously with the development of the classical

ones. The reference can be found first known in the correspondence of G. W. Leibniz

and Marquis de Hospital in 1695 where the question of meaning of the semi-derivative

has been raised. This question consequently attracted the interest of many well-known

mathematicians, including Riemann, Grünwald, Letnikov, Euler, Liouville, Laplace, and

many others. Since the 19th century, the theory of fractional calculus developed rapidly,

mostly as a foundation for a number of applied disciplines, including fractional geometry,

fractional differential equations and fractional dynamics. The applications of Fractional

Calculus are very wide nowadays. It is safe to say that almost no discipline of modern

engineering and science in general, remains untouched by the tools and techniques of

fractional calculus. For example, wide and fruitful applications can be found in rheology,

viscoelasticity, acoustics, optics, chemical and statistical physics, robotics, control theory,

electrical and mechanical engineering, bio-engineering, etc. In fact, one could argue that

real world processes are fractional order systems in general. The main reason for the

success of fractional calculus applications is that these new fractional-order models are

often more accurate than integer-order ones, i.e., there are more degrees of freedom in

the fractional order model than in the corresponding classical one. One of the intriguing

1
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beauties of the subject is that fractional derivatives and integrals are not local quantities.

The fractional operators consider the entire history of the physical process and can be used

to model the non-local and distributed effects often encountered in natural and technical

phenomena. Fractional calculus is therefore an excellent set of tools for describing the

memory and hereditary properties of various materials and processes.

However the interest in the specific topic of fractional calculus surged only at the end of

the last century. Fractional differential equations, that is, those involving real and complex

order derivatives, have assumed an important role in modeling the anomalous dynamics

of many processes related to complex systems in the most diverse areas of science and

engineering. There has been a spectacular increase in the use of fractional differential

models to simulate the dynamics of many different anomalous processes, especially those

involving ultra-slow diffusion. The following table is only based on the scopus database,

but it reflects this state of affairs clearly: [6]

Words in title or abstract 1960-1980 1981-1990 1991-2000 2001-2010

Fractional Brownian Motion 2 38 532 1295

Anomalous Diffusion 185 261 626 1205

Anomalous Relaxation 21 23 70 61

Superdiffusion or Subdiffusion 0 22 121 521

Fractional Models, Kinetics, Dynamics 11 24 128 443

Fractional Differential Equations 1 1 74 943

Table 1.1.1: Evolution in the number of publications on fractional differential equations

and their applications.

1.2 Definitions of Fractional Derivatives

There are several definitions given to fractional derivatives. In this section we will give

some important definitions of fractional integral and derivative.

Riemann-Liouville fractional integral: The Riemann-Liouville fractional integral of
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order α > 0 is defined by [27]

R
0 D

−α
t f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ. (1.2.1)

Riemann-Liouville fractional derivative: The Riemann-Liouville fractional derivative is

defined, with α > 0 and n− 1 < α < n, n ∈ Z+, [27]

R
0 D

α
t f(t) = DnDα−n

t f(t) = Dn 1

Γ(n− α)

∫ t

α

(t− τ)n−α−1f(τ) dτ. (1.2.2)

Caputo fractional derivative: For α > 0, the Caputo fractional derivative is defined, with

n− 1 < α < n, n ∈ Z+, [27]

C
0 D

α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1Dnf(τ) dτ. (1.2.3)

When α = n, we define

R
0 D

α
t f(t) =

dn

dtn
f(t). (1.2.4)

Riesz fractional derivative: For n− 1 < α < n, n ∈ Z+, the Riesz fractional derivative is

defined by, [76]

dα

d|x|α
u(t, x) = −Cα

(
R
0 D

α
xu(t, x) + R

xD
α
1 u(t, x)

)
, (1.2.5)

where Cα = 1
2 cos(πα

2
)
, α 6= 1 and

R
0 D

α
xu(x, t) =

1

Γ(n− α)

dn

dxn

∫ x

0

u(ξ, t)

(x− ξ)α+1−ndξ,

R
xD

α
1 u(x, t) =

1

Γ(n− α)
(−1)n

dn

dxn

∫ 1

x

u(ξ, t)

(ξ − x)α+1−ndξ.

There are relations between the different fractional derivatives, see, e.g., Podlubny [76].

1.3 Laplace Transform and Fourier Transform

Laplace transform is an integral transform named after its inventor Pierre-Simon Laplace.

It transforms a function of a real variable t to a function of a complex variable s. The

Laplace transform has many applications in science and engineering.
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The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the

function F (s), which is a unilateral transform defined by, [8]

F (s) =

∫ ∞
0

f(t)e−stdt,

where s is a complex number frequency parameter.

The inverse Laplace Transform of F (s) is defined as

f(t) =
1

2πi

∫
Γ

estF (s)ds,

where Γ is the line with <z = a, a > 0.

The Fourier transform of a function f is traditionally denoted by f̂ . There are several

common conventions for defining the Fourier transform of an integrable function f : R 7→

C. We can write it’s Fourier transform, for any real number ξ, [8]

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx.

The inverse Fourier transform of f̂ is defined by

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)e2πixξdξ.

1.4 Stochastic Calculus

Stochastic calculus has come to play an important role in many branches of science and

technology where day by day more and more mathematician have encountered in this

field. Stochastic calculus is the area of mathematics that deals with processes containing

a stochastic component and thus allows the modeling of random systems. Many stochastic

processes are based on functions which are continuous, but nowhere differentiable. This

rules out differential equations that require the use of derivative terms, since they are

unable to be defined on non-smooth functions. Instead, a theory of integration is required

where integral equations do not need the direct definition of derivative terms. In quan-

titative finance, the theory is known as Itô Calculus. We will discuss about stochastic

calculus and their properties in Chapter two and Chapter three.
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1.5 Contributions of this Work and Outline

In this section, we introduce the topics in each chapter in this thesis.

In Chapter 1, we will discuss the general history of fractional calculus, stochastic

calculus.

In Chapter 2, we will discuss the basic notations and properties of stochastic ordinary

differential equation. Some of the important results of stochastic calculus are discussed

in this chapter. For example probability theory, Brownian motions, stochastic process,

stochastic ODE, stochastic integral are discussed here.

In Chapter 3, we will discuss the basic notations and properties of stochastic partial

differential equation. We shall introduce Q-Wiener process, Green function, etc. In addi-

tion we will present the existence and uniqueness theorems of stochastic partial differential

equations.

In Chapter 4, we will discuss Fourier spectral methods for solving parabolic partial

differential equations. Here we will consider how to use MATLAB functions ”dst.m”,

”idst.m” and ”fft.m”, ”ifft.m” to solve semilinear parabolic equation by using spectral

method.

In Chapter 5, we will discuss Fourier spectral methods for solving some linear stochas-

tic space fractional partial differential equations perturbed by space-time white noises in

one dimensional case. The space fractional derivative is defined by using the eigenvalues

and eigenfunctions of Laplacian subject to some boundary conditions. We approximate

the space-time white noise by using piecewise constant functions and obtain the ap-

proximated stochastic space fractional partial differential equations. The approximated

stochastic space fractional partial differential equations are then solved by using Fourier

spectral methods. Error estimates in L2-norm are obtained and numerical examples are

given.

In Chapter 6, we will discuss Fourier spectral methods for solving stochastic space

fractional partial differential equation driven by special additive noises in one dimensional

case. The space fractional derivative is defined by using the eigenvalues and eigenfunctions

of Laplacian subject to some boundary conditions. The space-time noise is approximated

by the piecewise constant functions in the time direction and by appropriate approx-
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imations in the space direction. The approximated stochastic space fractional partial

differential equations is then solved by using Fourier spectral methods. Error estimates

are obtained and numerical examples are given.

In Chapter 7, we will consider the discontinuous Galerkin time stepping methods for

solving the linear space fractional partial differential equations. The space fractional

derivatives are defined by using Riesz fractional derivative. The space variable is dis-

cretized by means of a Galerkin finite element method and the time variable is discretized

by the discontinuous Galerkin method. The approximate solution will be sought as a

piecewise polynomial function in t of degree at most q− 1, q ≥ 1, which is not necessarily

continuous at the nodes of the defining partition. The error estimates in the fully discrete

case are obtained and the numerical examples are given.

In Chapter 8, we consider error estimates for the modified L1 scheme for solving time

fractional partial differential equation. Jin et al. (2016, An analysis of the L1 scheme for

the subdiffifusion equation with nonsmooth data, IMA J. of Number. Anal., 36, 197-221)

established the O(k) convergence rate for the L1 scheme for both smooth and nonsmooth

initial data. We introduce a modified L1 scheme and prove that the convergence rate

is O(k2−α), 0 < α < 1 for both smooth and nonsmooth initial data. We first write the

time fractional partial differential equations as a Volterra integral equation which is then

approximated by using the convolution quadrature with some special generating functions.

The numerical schemes obtained in this way are equivalent to the standard L1 scheme

and modified L1 scheme, respectively. A Laplace transform method is used to prove the

error estimates for the homogeneous time fractional partial differential equation for both

smooth and nonsmooth data. Numerical examples are given to show that the numerical

results are consistent with the theoretical results.

Finally in Chapter 9, we outline the summary of the thesis and indicate the further

research plans.



Chapter 2

Basics for Stochastic Ordinary

Differential Equations

2.1 Introduction

A stochastic differential equation (SDE) is a differential equation in which one or more of

the terms are stochastic processes, resulting in a solution which is also a stochastic process.

The most common form of SDE in the literature is an ordinary differential equation with

the right hand side perturbed by a term dependent on a white noise. Stochastic ODEs

are used to model various phenomena such as unstable stock prices or physical systems

subject to thermal fluctuations.

2.2 Basic Notations of Probability Theory

Let us consider rolling a die or tossing a coin, with an outcome that changes randomly

with each repetition. When the experiment is repeated, the statistical and probabilistic

tools are needed to analyze the frequency of the outcome. In particular, we assign a

probability to each outcome as a limit of the frequency of occurrence relative to the total

number of trials.

Let (Ω,F ,P) [62, p.137] be the probability space. Here Ω is the sample space and F is

the σ-algebra of Ω and P is the probability measure defined on F . A probability measure

P on the measurable space (Ω,F) is a function P : F 7→ [0, 1] such that

7
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1) P(Ω) = 1;

2) for any disjoint sequence Ai ⊂ F , that is, Ai ∩ Aj = φ, i 6= j,

P(∪Ai) =
∞∑
i=1

P(Ai).

If X is a real valued random variable and is integrable with respect to the probability

measure P, then the number [62, p.139]

EX =

∫
Ω

X(ω)dP(ω)

is called the expectation of X. The number

Var(X) = E(X − EX)2

is called the variance of X.

2.3 Brownian Motions

The name of the Brownian Motion is given to the irregular movement of pollen grains,

suspended in water, observed by the Scottish botanist Robert Brown in 1828 [62]. The

motion was later explained by the random collisions with the molecules of water. To

describe the motion mathematically it is natural to use the concept of a stochastic process

Bt(ω), interpreted as the position of the pollen grain ω at time t. Brownian motion is

the actual physical motion of these particles, the Wiener process is the mathematical

interpretation of this process. Let us now give the mathematical definition of Brownian

motion [62].

Definition 2.3.1. Let (Ω,F ,P) be a probability space with a filtration {Ft}. A stan-

dard one-dimensional Brownian motion is a real-valued continuous {Ft}-adapted process

{Bt}t≥0 with the following properties:

1) B0 = 0 a.s;

2) for 0 ≤ s < t < ∞ the increment Bt − Bs is normally distributed with mean zero

and variance t− s;

3) for 0 ≤ s < t <∞ the increment Bt −Bs is independent of Fs.
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2.4 Stochastic Process

Let (Ω,F ,P) be a probability space. A stochastic process is simply a collection of random

variables indexed by time. It will be useful to consider separately the cases of discrete time

and continuous time. That is, a discrete time stochastic process X = {Xn, n = 0, 1, 2, ...}

is a countable collection of random variables indexed by the non-negative integers, and a

continuous time stochastic process X = {Xt, 0 ≤ t < ∞} is an uncountable collection of

random variables indexed by the non-negative real numbers [62].

2.5 Stochastic Integral

Now we consider how to define the stochastic integral∫ T

0

f(t)dB(t),

where B(t) = Bt is the standard Brownian motion. Here f(t) = f(t, ω) : [0,∞) × Ω 7→

R is a measurable function. Since B(t) is not of bounded variation, we cannot define∫ T
0
f(t)dBt by using usual Riemanm-Stieltjes integration method. We need to introduce

other way to define the stochastic integral. For example, we may define the integral for a

large class of stochastic processes by making use of the properties of Brownian motions.

Such integral was first defined by K. Itô in 1949 and now it’s known as Itô stochastic

integral [62].

2.6 Stochastic Ordinary Differential Equation

We now consider the following stochastic ordinary differential equation [62],

du = f(u(t))dt+G(u(t))dB(t), (2.6.1)

u(0) = u0.

This stochastic ordinary differential equation can be written as the following integral form,

u(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s)) dB(s), (2.6.2)
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where f : Rd 7→ Rd is a vector-valued function known as the drift, G : Rd 7→ Rd×m is a

matrix-valued function, known as the diffusion. Here B(t) = [B1(t), B2(t), . . . , Bm(t)] ∈

Rm is a Rm-valued Brownian motion on a filtered probability space (Ω,F ,Ft,P), and∫ t
0
G(u(s))B(s) denotes the Itô integral, see e.g., [62, page 314].

Assumption 2.6.1. [62, page 325]

Let d ∈ Z+. There exists a constant L > 0 such that the following linear growth

conditions hold:

‖f(u)‖2
Rd ≤ L(1 + ‖u‖2

Rd), (2.6.3)

‖G(u)‖2
Rd×m ≤ L(1 + ‖u‖2

Rd), ∀u ∈ Rd,

and the following global Lipschitz conditions hold:

‖f(u1)− f(u2)‖Rd ≤ L||u1 − u2‖Rd , (2.6.4)

‖G(u1)−G(u2)‖Rd×m ≤ L‖u1 − u2‖Rd , ∀u1, u2 ∈ Rd.

We remark that in this thesis, we will use ‖ ·‖Rd or | · |Rd to denote the Euclidean norm

in Rd.

Definition 2.6.1. [65] A real valued stochastic process g = {g(t)}a≤t≤b is called a simple

process if there exist a partition a = t0 < t1 < · · · < tk = b of [a, b] and the bounded

random variables ξi, 0 ≤ i ≤ k − 1 such that ξi are Fti- measurable and

g(t) =



ξ0, t0 ≤ t ≤ t1,

ξ1, t1 ≤ t ≤ t2,

· · ·

ξk−1, tk−1 ≤ t ≤ tk.

(2.6.5)

Denote by M0([a, b];R) the family of all such processes defined in (2.6.5).

Definition 2.6.2. [65] For a simple process g ∈M0([a, b];R), we define∫ b

a

g(t)dBt =
k−1∑
i=1

ξi(Bti+1 −Bti), (2.6.6)

and call it the stochastic integral or Itô integral of g with respect to the Brownian motion

{Bt}.
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More precisely, the stochastic integral
∫ b
a
g(t)dBt is Fb-measurable. We will now show

that it belongs to L2(Ω,R).

Lemma 2.6.2. [65] If g ∈M0([a, b];R), then we have

E
∫ b

a

g(t) dBt = 0,

E
∣∣∣ ∫ b

a

g(t)dBt

∣∣∣2 = E
∫ b

a

|g(t)|2dt.

Proof. Since ξi is Fti measurable and (Bti+1
−Bti) is independent of Fti , we have

E
∫ b

a

g(t)dBt =
k−1∑
i=0

E[ξi(Bti+1
−Bti)] =

k−1∑
i=0

ξiE(Bti+1
−Bti) = 0.

Moreover, we have, noting that Btj+1
−Btj is independent of ξiξj(Bti+1

−Bti) if i < j,

E
∣∣∣ ∫ b

a

g(t)dBt

∣∣∣2 =
∑

0≤i,j≤k−1

E[ξiξj(Bti+1
−Bti)(Btj+1

−Btj)]

=
k−1∑
i=0

Eξ2
i (Bti+1

−Bti)
2 =

k−1∑
i=0

Eξ2
i (Bti+1

−Bti)
2

=
k−1∑
i=0

Eξ2
i (Bti+1

−Bti)
2 = E

∫ b

a

|g(t)|2dt.

The proof is complete.

We may also define the stochastic integral
∫ b
a
f(t)dBt for any M2([a, b];R).

Definition 2.6.3. [65] Let 0 ≤ a < b <∞. Denote by M2([a, b];R) the space of all real

valued measurable {Ft} adapted stochastic process f = {f(t)}a≤t≤b such that

||f ||2a.b = E
∫ b

a

|f(t)|2dt <∞.

Definition 2.6.4. Let (Ω,F ,Ft,P) be a filtered probability space. Let H2,T be the set

of Rd-valued predictable process {u(t) : t ∈ [0, T ]} such that

||u||H2,T
:= sup

t∈[0,T ]

||u(t)||L2(Ω,Rd) = sup
t∈[0,T ]

E
(
|u(t)|2Rd

) 1
2 <∞. (2.6.7)
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Theorem 2.6.3. (Contraction mapping) [62, page 2] Let Y be a non-empty closed subset

of the Banach space (X, ‖ . ‖). Consider a mapping J : Y → Y such that, for some

µ ∈ (0, 1),

‖ J u− J v ‖≤ µ ‖ u− v ‖, ∀u, v ∈ Y. (2.6.8)

Then there exists a unique fixed point of J in Y , that is, there is a unique u ∈ Y such

that J u = u.

Proof. Fix u0 ∈ Y and consider un = J nu0 (the nth iteration of u0 under application

of J ) The sequence un is easily shown to be Cauchy in Y using (2.6.8) and therefore

converges to a limit u ∈ Y because Y is complete (as a closed subset of X). Now un → u

and hence un+1 = J un → J u as n→∞. We conclude that un converges to a fixed point

of J . If u, v ∈ Y are both fixed points of J , then J u − J v = u − v. But (2.6.8) holds

and hence u = v and the fixed point is unique.

The proof of Theorem 2.6.3 is complete.

2.7 Existence and Uniqueness of SODEs

Theorem 2.7.1. [62, page 325]

Suppose that the Assumption 2.6.1 holds and that B(t) is an Ft Brownian motion on

(Ω,F ,Ft,P). For each T > 0 and u0 ∈ Rd, there exists an unique u ∈ H2,T such that for

t ∈ [0, T ], u satisfies the stochastic differential equation (2.6.1).

Proof. Consider a random variable u0 ∈ L2(Ω,Rd) which is independent of F0 and hence

of the process B(t). For u ∈ H2,T , let

J (u)(t) := u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s)) dB(s), t ∈ [0, T ]. (2.7.1)

If u ∈ H2,T is the fixed point of J , then it satisfies the integral equation (2.7.1).

Step1. We assume that u0 is deterministic.

Step2. Define the operator J : H2,T 7→ H2,T by

J (u)(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s)) dB(s).
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We shall show the existence of a unique fixed point by applying the contraction mapping

theorem on the Banach space H2,T . To apply the contraction mapping Theorem we need

to show the following:

1) J maps H2,T into H2,T ,

2) J satisfies the contraction condition, i.e.,

‖J (u)− J (v)‖H2,T
≤ µ‖u− v‖H2,T

,

for some µ ∈ (0, 1).

Step3. We shall prove that J maps from H2,T into H2,T . We have

J (u) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s)) dB(s),

|J (u)|2Rd ≤ 3|u0|2Rd + 3|
∫ t

0

f(u(s))ds|2Rd + 3|
∫ t

0

G(u(s)) dB(s)|2Rd ,

E|J (u)|2Rd ≤ 3E|u0|2Rd + 3E|
∫ t

0

f(u(s))ds|2Rd + 3E|
∫ t

0

G(u(s)) dB(s)|2Rd .

By Cauchy-Schwarz inequality, we have∣∣∣ ∫ t

0

f(u(s))ds
∣∣∣2
Rd
≤
(∫ t

0

12 ds
)
·
∫ t

0

|f(u(s))|2Rd ds = t

∫ t

0

|f(u(s))|2Rdds.

By the isometry property, we have

E|
∫ t

0

G(u(s)) dB(s)|2Rd =

∫ t

0

E‖G(u(s))‖2
Rd×mds.

Thus we get

E|J (u)|2Rd ≤ 3E|u0|2Rd + 3Et
∫ t

0

|f(u(s))|2Rd ds+ 3E
∫ t

0

‖G(u(s))‖2
Rd×m ds.

By the linear growth conditions, we have

E|J (u)|2Rd ≤ 3E|u0|2Rd + 3tE
∫ t

0

L2
(

1 + |u(s)|2Rd
)
ds+ 3E

∫ t

0

L2E
(

1 + |u(s)|2Rd
)
ds.

Finally, we take the supremum over t ∈ [0, T ] in the last two terms and we get

E|J (u)|2Rd ≤ 3E|u0|2Rd + 3L2t · t
(

1 + sup
0≤s≤t

E|u(s)|2Rd
)

+ 3L2t
(

1 + sup
0≤s≤t

E|u(s)|2Rd
)
.

Hence we see that, noting u ∈ H2,T ,

sup
0≤t≤T

E|J (u)|2Rd ≤3E|u0|2Rd + 3L2T 2
(

1 + sup
0≤s≤t

E|u(s)|2Rd
)

+ 3L2T
(

1 + sup
0≤s≤t

E|u(s)|2Rd
)
<∞,
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which implies that

J (u) ∈ H2,T , ∀u ∈ H2,T . (2.7.2)

Step4. Show that J satisfies the contraction condition, that is,

‖J (u1)− J(u2)‖H2,T
≤ µ‖u1 − u2‖H2,T

.

Note that

E‖J (u1)(t)− J(u2)(t)‖2
Rd

= E‖
∫ t

0

[
f(u1(s)− f(u2(s))

]
ds+

∫ t

0

[
G(u1(s))−G(u2(s))

]
dB(s)‖2

Rd

≤ 2E‖
∫ t

0

[
f(u1(s)− f(u2(s))

]
ds‖2

Rd + 2E‖
∫ t

0

[
G(u1(s))−G(u2(s))

]
dB(s)‖2

Rd

≤ 2tE
∫ t

0

‖f(u1(s)− f(u2(s))‖2
Rdds+ 2E

∫ t

0

‖G(u1(s))−G(u2(s))‖2
Rd×mds.

By the Lipschitz condition (2.6.4), we have

E‖J (u1)(t)− J(u2)(t)‖2
Rd ≤ 2tL2E

∫ t

0

‖u1(s)− u2(s)‖2
Rdds+ 2L2E

∫ t

0

‖u1(s)− u2(s)‖2
Rdds

≤ 2L2t(t+ 1) sup
0≤s≤t

E‖u1(s)− u2(s)‖2
Rd .

Thus we get

sup
0≤t≤T

E‖J (u1)(t)− J(u2)(t)‖2
Rd ≤ 2L2T (T + 1) sup

0≤t≤T
E‖u1(t)− u2(t)‖2

Rd .

Choosing the sufficiently small T such that

2L2T (T + 1) <
1

2
,

we then have

sup
0≤t≤T

E‖J (u1)(t)− J(u2)(t)‖2
Rd ≤

1

2
sup

0≤t≤T
E‖u1(t)− u2(t)‖2

Rd ,

which implies that

‖J (u1)− J(u2)‖H2,T
≤ 1

2
‖u1 − u2‖H2,T

.

Thus J is indeed a contraction on H2,T . By contraction mapping theorem, there exists a

unique u ∈ H2,T such that

u(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s)) dB(s).

The proof of Theorem 2.7.1 is complete.
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2.8 Numerical Methods for Stochastic ODEs

We shall discuss how to solve stochastic ODEs by Euler-Maruyama method numerically in

this section. In Itô calculus, the Euler-Maruyama method (also called the Euler method)

is a method for the approximate numerical solution of a stochastic differential equation

(SDE). It is a simple generalization of the Euler method for ordinary differential equa-

tions to stochastic differential equations. It is named after Leonhard Euler and Gisiro

Maruyama [62].

Now let us consider the numerical solution for solving SODEs,

du(t) = f(u(t))dt+G(u(t))dW (t), 0 ≤ t ≤ T,

u(0) = u0,

or formally

du(t)

dt
= f(u(t)) +G(u(t))

dW (t)

dt
, 0 ≤ t ≤ T, (2.8.1)

u(0) = u0. (2.8.2)

Here we denote the Brownian motion B(t) by W (t). Let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be

a partition of [0, T ] and ∆t be the stepsize. At t = tn, 0 ≤ n ≤ N − 1, we have

du(t)

dt

∣∣∣
t=tn

= f(u(t))
∣∣∣
t=tn

+G(u(t))
dW (t)

dt

∣∣∣
t=tn

, 0 ≤ t ≤ T.

We now consider the Euler-Maruyama method, we shall use the following approximations,

du(t)

dt

∣∣∣
t=tn

=
u(tn+1)− u(tn)

∆t
+O(∆t),

f(u(t))
∣∣∣
t=tn
≈ f(u(tn)),

G(u(t))
∣∣∣
t=tn
≈ G(u(tn)),

dW (t)

dt

∣∣∣
t=tn
≈ W (tn+1)−W (tn)

∆t
.

Let Un ≈ u(tn) be the approximate solution of u(tn), we define the following Euler-

Maruyama method,

Un+1 − Un = f(Un)∆t+G(Un)∆W n, n = 0, 1, 2, . . . , N − 1,
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where

∆W n = W n+1 −W n ≈
√

∆tN (0, 1).

Here N (0, 1) denotes the normally distributed random variable.

To consider the strong error estimate, we introduce some notations. Let Ū(t) denote

the continuous approximation such that

Ū(t) = Un + (t− tn)f(Un) +G(Un)(W (t)−W (tn)), t ∈ [tn, tn+1].

It is easy to see Ū(t) is continuous on [0, T ] and

Ū(tn) = Un, Ū(tn+1) = Un+1.

Let U(t) denote the piecewise constant function defined by

U(t) =



U0, [t0, t1),

U1, [t1, t2),
...

UN−1, [tN−1, tN).

Then we have

Ū(t) = U0 +

∫ t

0

f(U(s))ds+

∫ t

0

G(U(s))dW (s), ∀ 0 ≤ t ≤ T. (2.8.3)

For example, with t = t1 and t2, we have

Ū(t1) = U0 +

∫ t1

0

f(U(s))ds+

∫ t1

0

G(U(s))dW (s)

= U0 + f(U0)(t1 − t0) +

∫ t1

0

G(U0)dW (s),

Ū(t2) = U0 +

∫ t2

0

f(U(s))ds+

∫ t2

0

G(U(s))dW (s)

= U0 + f(U0)(t1 − t0) +

∫ t1

0

G(U0)dW (s) + f(U1)(t2 − t1) +

∫ t2

t1

G(U1)dW (s)

= U1 + f(U1)(t2 − t1) +

∫ t2

t1

G(U1)dW (s).

For the general t ∈ (tn, tn+1], we have

Ū(t) = U0 +

∫ t

0

f(U(s))ds+

∫ t

0

G(U(s))dW (s)

= U0 +

∫ tn

0

f(U(s))ds+

∫ tn

0

G(U(s))dW (s) +

∫ t

tn

f(U(s))ds+

∫ t

tn

G(U(s))dW (s)

= Un + (t− tn)f(Un) +G(Un)

∫ t

tn

dW (s).
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We have the following strong convergence error estimate for the Euler method.

Theorem 2.8.1. Let u(t) and Ū(t) be the solutions of (2.8.1) and (2.8.3), respectively.

Then we have

E sup
0≤t≤T

|Ū(t)− u(t)|2Rd = O(∆t).

Proof. Step1. We observe that u(t) satisfies

u(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s))dW (s), (2.8.4)

and Ū(t) satisfies

Ū(t) = U0 +

∫ t

0

f(U(s))ds+

∫ t

0

G(U(s))dW (s). (2.8.5)

Subtracting (2.8.5) from (2.8.4), we get, since u0 = U0,

Ū(t)− u(t) =

∫ t

0

[f(U(s))− f(u(s))]ds+

∫ t

0

[G(U(s))−G(u(s))]dW (s),

|Ū(t)− u(t)|2 =
∣∣∣ ∫ t

0

[f(U(s))− f(u(s))]ds+

∫ t

0

[G(U(s))−G(u(s))]dW (s)
∣∣∣2

≤ 2
∣∣∣ ∫ t

0

[f(U(s))− f(u(s))]ds
∣∣∣2 + 2

∣∣∣ ∫ t

0

[G(U(s))−G(u(s))]dW (s)
∣∣∣2.

Taking the expectation, we get,

E|Ū(t)− u(t)|2 ≤ 2E
∣∣∣ ∫ t

0

[f(U(s))− f(u(s))] ds
∣∣∣2 + 2E

∣∣∣ ∫ t

0

[G(U(s))−G(u(s))]dW (s)
∣∣∣2

= I1 + I2. (2.8.6)

For I1 we have, by using Cauchy-Schwarz inequality and Lipschitz condition,

I1 ≤ 2E[

∫ t

0

12].ds

∫ t

0

[f(U(s))− f(u(s))]2 ds

≤ CE
∫ t

0

|U(s)− u(s)|2 ds.

For I2, we have, by using the isometry property,

I2 = 2E
∫ t

0

‖G(U(s)−G(u))‖2ds ≤ CE
∫ t

0

|U(s)− u(s)|2ds.

Here ‖G(U(s)−G(u))‖ denotes the matrix norm. Thus we get

E|Ū(t)− u(t)|2 ≤ CE
∫ t

0

|U(s)− u(s)|2ds

≤ CE
∫ t

0

|U(s)− Ū(s)|2ds+ CE
∫ t

0

|Ū(s)− u(s)|2 ds.
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Step2. By the Grönwall Lemma, we have

E|Ū(t)− u(t)|2 ≤ CE
∫ t

0

|U(s)− Ū(s)|2 ds.

Step3. Estimate E
∫ t

0
|U(s)− Ū(s)|2ds.

Note that, for tn ≤ s ≤ tn+1,

U(s)− Ū(s) = Un −
(
Un +

∫ s

tn

f(U(r)) dr +

∫ s

tn

G(U(r)) dW (r)
)

= −f(Un)(s− tn)−G(Un)(W (s)−W (tn)).

Thus we have

|U(s)− Ū(s)|2 ≤ C|f(Un)|2∆t2 + C|G(Un)|2|W (s)−W (tn)|2.

By linear Growth conditions of f and G, we have

E|U(s)− Ū(s)|2 ≤ CE|Un|2∆t2 + CE|Un|2∆t,

where we use the fact that

E|W (s)−W (tn)|2 = s− tn ≤ ∆t, for tn ≤ s ≤ tn+1. (2.8.7)

Thus we get

E
∫ t

0

|U(s)− Ū(s)|2 ds = E
[ ∫ t1

0

+

∫ t2

t1

· · ·+
∫ t

tl

]
|U(s)− Ū(s)|2 ds (2.8.8)

= E
l−1∑
k=0

∫ tk+1

tk

|U(s)− Ū(s)|2ds+ E
∫ t

tl

|U(s)− Ū(s)|2 ds

≤ C

l−1∑
k=0

∫ tk+1

tk

[
E|Uk|2∆t2 + E|Uk|2∆t

]
ds (2.8.9)

+ C

∫ t

tl

[E|U l|2∆t2 + E|U l|2∆t] ds.

By using the boundedness assumption E[sup0≤t≤T |Ū(t)|2] ≤ C, we get

E
∫ t

0

|U(s)− Ū(s)|2ds ≤ C∆t+ C∆t2 ≤ C∆t.

The proof Theorem 2.8.1 is complete.
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We now consider the boundedness of the solution u.

Lemma 2.8.2. Let u be the solution of (2.8.1). We have

E|u(t)|2 ≤ C.

Proof. We have

u(t) = u0 +

∫ t

0

f(u(s))ds+

∫ t

0

G(u(s))dW (s).

Note that

E|u(t)|2 ≤ 3E|u0|2 + 3E|
∫ t

0

f(u(s))ds|2 + 3E|
∫ t

0

G(u(s))dW (s)|2

= 3E|u0|2 + 3E|
∫ t

0

f(u(s))ds|2 + 3E
∫ t

0

|G(u(s))|2ds.

By the linear growth condition, we get

E|u(t)|2 ≤ 3E|u0|2 + CE
∫ t

0

|u(s)|2 ds+ CE
∫ t

0

|u(s)|2 ds

≤ 3E|u0|2 + CE
∫ t

0

|u(s)|2 ds.

Hence we have, by Grönwall Lemma,

E|u(t)|2 ≤ CE|u0|2 <∞.

Together these estimates complete the proof of Lemma 2.8.2.

We next consider the boundedness of the solution of (2.8.3).

Lemma 2.8.3. Let Ū(t) be the solution of (2.8.3). We have

E|Ū(t)|2 ≤ C.

Proof. We have

Ū(t) = u0 +

∫ t

0

f(U(s))ds+

∫ t

0

G(U(s))dW (s).
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Note that

E|Ū(t)|2 ≤ 3E|u0|2 + 3E|
∫ t

0

f(U(s))ds|2 + 3E|
∫ t

0

G(U(s))dW (s)|2

≤ 3E|u0|2 + 3E|
∫ t

0

f(U(s))ds|2 + 3E|
∫ t

0

G(U(s))dW (s)|2

≤ 3E|u0|2 + CE
∫ t

0

|U(s)|2ds

≤ 3E|u0|2 + CE
∫ t

0

|U(s)− Ū(s)|2ds+ CE
∫ t

0

|Ū(s)|2ds.

By Grönwall Lemma, we have,

E|Ū(t)|2 ≤ CE|u0|2 + CE
∫ t

0

|U(s)− Ū(s)|2ds.

Note that,

E|U(s)− Ū(s)|2 ≤ C
(
E|Un|2

)
∆t2 + C(E|Un|2)∆t

≤ C∆t(E|Un|2).

Thus we have

E|Ū(t)|2 ≤ CE|u0|2 + CE
∫ t

0

∆t(E|Un|2)ds

≤ CE|u0|2 + C

∫ t

0

∆t(E sup
0≤s≤t

|Ū(s)|2) dr,

that is,

E
[

sup
0≤s≤t

|Ū(s)|2
]
≤ CE|u0|2 + C∆t

∫ t

0

E sup
0≤s≤t

|Ū(s)|2 dr.

By Grönwall lemma, we get

E
[

sup
0≤s≤t

|Ū(s)|2
]
≤ CE|u0|2 <∞.

The proof of Lemma 2.8.3 is complete now.



Chapter 3

Basics for Stochastic Partial

Differential Equations

3.1 Introduction

Stochastic partial differential equations (SPDEs) generalize partial differential equations

via random force terms and coefficients, in the same way as ordinary stochastic differential

equations generalize ordinary differential equations. The study of SPDEs is an exciting

topic which brings together techniques from probability theory, functional analysis, and

the theory of partial differential equations.

The solution to a stochastic partial differential equation may be viewed in several

manners. One can view a solution as a random field (set of random variables indexed by

a multidimensional parameter). In the case where the SPDE is an evolution equation,

the infinite dimensional point of view consists in viewing the solution at a given time as

a random element in a function space and thus view the SPDEs as a stochastic evolution

equation in an infinite dimensional space. In the pathwise point of view, the solution has a

meaning for almost every realization of the noise and then view the solution as a random

variable on the set of (infinite dimensional) paths thus defined. SPDEs can describe

several phenomena (physics, biology, medicine): heat or sound propagation, fluid flow,

transport of substances, population dynamics, neuronal activity, traffic modeling [62].
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Let H denote a Hilbert space. We consider the following stochastic partial differential

equation

du+ Audt = f(u)dt+G(u)dW, (3.1.1)

where A is a linear elliptic operator that generates a semigroup E(t) = e−tA. For example

A = −∆,D(A) = H1
0 (D)∩H2(D). Here W is the H-valued stochastic Wiener process.[62]

Now we introduce some different types of solutions of stochastic partial differential

equation such that strong solution, weak solution, and mild solution.

Definition 3.1.1. A predictable H-valued process u(t) : t ∈ [0, T ] is called a strong so-

lution of (3.1.1) if

u(t) = u0 +

∫ t

0

[−Au(s) + f(u(s))]ds+

∫ t

0

g(u(s))dW (s), ∀t ∈ [0, T ]. (3.1.2)

Definition 3.1.2. A predictableH-valued process u(t) : t ∈ [0, T ] is called a weak solution

of (3.1.1) if

〈u(t), v〉 = 〈u0, v〉+

∫ t

0

[−〈u(s), Av〉+ 〈f(u(s)), v〉]ds

+

∫ t

0

〈g(u(s))dW (s), v〉, ∀t ∈ [0, T ], v ∈ D(A).

Definition 3.1.3. A predictable H-valued process u(t) : t ∈ [0, T ] is called a mild solution

of (3.1.1) if

u(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(u(s))ds+

∫ t

0

e−(t−s)AG(u(s))dW (s), (3.1.3)

where e−tA is the semigroup generated by -A.

3.2 Q-Wiener Process

Let (Ω,F ,P) be a filtered Ft-adapted probability space. A H-valued stochastic process

{W (t) : t ≥ 0} is defined as follows [62, page 436].

Definition 3.2.1. A H-valued stochastic process {W (t) : t ≥ 0} is a Q-Wiener process if

1) W(0)=0, a.s.,

2) W(t) is a continuous function R+ 7→ H for each ω ∈ Ω,
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3) W(t) is Ft adapted and W (t)−W (s) is independent of Ft for s < t,

4) W (t) −W (s) ∼ N (0, (t − s)Q), ∀ 0 ≤ s ≤ t, where Q : H 7→ H is a positive,

definite bounded operator.

3.3 Green Function

The unique solution of a PDE can be written in a very compact form by introducing an

auxiliary function known as the Green’s function.

Consider

ut − u′′ = f, 0 < x < 1, (3.3.1)

u(0) = u(1) = 0,

u(0) = u0.

Let {ej}∞j=1 be the eigenfunctions of A = − ∂2

∂x2 and D(A) = H1
0 (0, 1) ∩H2(0, 1).

Lemma 3.3.1. Let f = 0. Assume that

u(0, x) = u0 =
∞∑
j=1

(u0, ej)ej. (3.3.2)

Then the solution of equation (3.3.1) has the form of

u(t, x) =
∞∑
j=1

(u0, ej)e
−λjtej(x) =

∫ 1

0

G(t, x, y)u0(y) dy, (3.3.3)

where G(t, x, y) is the Green function and

G(t, x, y) =
∞∑
j=1

e−λjtej(x)ej(y).

Proof. Assume that the solution of equation (3.3.1) has the form of

u(t, x) =
∞∑
j=0

uj(t)ej(x). (3.3.4)

Substituting this into the equation (3.3.1), we have,

∞∑
j=0

(u′j(t)− λjuj(t))ej(x) = 0,
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which implies that

u′j(t)− λjuj(t) = 0, with uj(0) = (u0, ej).

Hence we get

uj(t) = (u0, ej)e
−λjt,

and

u(t, x) =
∞∑
j=1

(u0, ej)e
−λjtej(x) =

∞∑
j=1

(∫ 1

0

u0(y)ej(y) dy
)
e−λjtej(x)

=

∫ 1

0

G(t, x, y)u0(y) dy,

where the function G is called the ”Green function”.

Assumption 3.3.2. [62] There exists a constant L > 0 such that the linear growth

conditions hold:

‖f(u)‖2
H ≤ L(1 + ‖u‖2

H), (3.3.5)

‖G(u)‖2
L2

0
≤ L(1 + ‖u‖2

H),

and the global Lipschitz conditions hold:

‖f(u1)− f(u2)‖H ≤ L(‖u1 − u2‖H), (3.3.6)

‖G(u1)−G(u2)‖L2
0
≤ L(‖u1 − u2‖H).

Here L2
0 = HS(Q

1
2H,H) defined by

L2
0 = {ψ : ‖ψQ

1
2‖2

HS =
∞∑
j=1

‖ψQ
1
2 ej‖2 <∞}. (3.3.7)

Here ‖.‖HS denotes the Hilbert-Schmidt norm, where ej is an orthonormal basis for H.

L2
0 is a Banach space with norm ‖ · ‖L2

0
.

Assumption 3.3.3. [62, page 436]

Let Q ∈ L(H) be non-negative definite and symmetric bounded operator. Further, Q

has an orthonormal basis {ej : j ∈ N} of eigenfunctions with corresponding eigenvalues

qj ≥ 0 such that
∑

j∈N qj <∞ (i.e., Q is of trace class).
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Theorem 3.3.4. [62, page 437] Let Q satisfy Assumption 3.3.3. Then W (t) is a Q-Wiener

process if and only if

W (t) =
∞∑
j=1

√
qjejβj(t), a.s., (3.3.8)

where βj(t) are iid Ft- Brownian motions and the series converges in L2(Ω, H). Moreover,

(3.3.8) converges in L2(Ω, C([0, T ], H)) for any T > 0.

Proof. Let W (t) be a Q-Wiener process and suppose without loss of generality that qj > 0

for all j. Since ej : j ∈ N is an orthonormal basis for H, we may write

W (t) =
∞∑
j=1

(W (t), ej)ej.

Let βj(t) := 1√
q
j
(W (t), ej)ej, so that (3.3.8) holds. Clearly then, βj(0) = 0 a.s. and βj(t)

is Ft adapted and has continuous sample path. The increment

βj(t)− βj(s) =
1
√
q
j

(W (t)−W (s), ej), 0 ≤ s ≤ t,

is independent of Fs. As W (t)−W (s) ∼ N (0, (t− s)Q), we have

Cov(βj(t)− βj(s), βk(t)− βk(s)) =
1

√
qjqk

E(W (t)−W (s), ej),

and

(W (t)−W (s), ek) =
1

√
qjqk

(t− s)(Qej, ek) = (t− s)δjk.

Then, βj(t) − βj(s) ∼ N (0, t − s) and βj(t) is a Ft Brownian motion. Any pair of

increments forms a multivariate Gaussian and hence βj and βk are independent for j 6= k.

To show W (t) as defined by (3.3.8) is a Q-Wiener process, we first show the series

converges in L2(Ω, H) for any fixed t ≥ 0. Consider the finite sum approximation

W J(t) :=
J∑
j=1

√
qjejβj(t),

and the difference W J(t)−WM(t), for M < J . By the orthonormality for the eigenfunc-

tions ej, we have, using Parseval’s identity,

‖ W J(t)−WM(t) ‖2
H=

J∑
j=M+1

qjβj(t)
2.
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Each βj(t) is a Brownian motion and taking the expectation gives

E ‖ W J(t)−WM(t) ‖2
H=

J∑
j=M+1

qjE[βj(t)
2] = t

J∑
j=M+1

qj.

AsQ is a trace class,
∑∞

j=1 qj <∞ and the right-hand side converges to zero asM,J →∞.

Thus the series (3.3.8) is well defined in L2(Ω, H). Now we prove W is Q-wiener process.

In fact, we have

E(W (t), ej) = 0,

E(W (t)−W (s), ej)
2 = (t− s)(Qej, xj) = qj(t− s).

The proof of Lemma 3.3.4 is complete.

Definition 3.3.1. [62] Let (λj, ej) be the eigenpairs of A. The fractional power Aα for

α ∈ R is defined by, with u =
∑∞

j=1 ujej, uj ∈ R,

Aαu :=
∞∑
j=1

λαj ujej.

Let the domain D(Aα) be the set of

D(Aα) = {u : ‖Aαu‖2
L2 =

∞∑
j=1

(Aαu, ej)
2 =

∞∑
j=1

λ2α
j u

2
j <∞}. (3.3.9)

Theorem 3.3.5. [62, page 445] LetQ satisfy Assumption 3.3.3 and suppose that {ψ(s) : s ∈ [0, T ]}

is a L2
0 -valued predictable process such that∫ T

0

E[‖ ψ(s) ‖2
L2

0
]ds <∞. (3.3.10)

For t ∈ [0, T ], the following stochastic integral is well defined, withW (s) =
∑∞

j=1 q
1
2
j ejβj(s),∫ t

0

ψ(s)dW (s) :=
∞∑
j=1

∫ t

0

ψ(s)
√
qjejdβj(s). (3.3.11)

For t ∈ [0, T ] the following Itô isometry holds:

E ‖
∫ t

0

B(s)dW (s) ‖2=

∫ t

0

E ‖ B(s) ‖2
L2

0
ds.

Further {
∫ t

0
B(s)dW (s) : t ∈ [0, T ]} is an H-valued predictable process.
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Proof. We have∫ t

0

ψ(s)dW (s) =
∞∑
j=1

∫ t

0

ψ(s)
√
qjejdβj(s). (3.3.12)

To show (3.3.12) is well defined in L2(Ω, H) we have, with I(t) :=
∫ t

0
ψ(s)dW (s),

‖I(t)‖2 =‖
∞∑
j=1

∫ t

0

ψ(s)
√
qjejdβj(s) ‖

2=
∞∑
k=1

( ∞∑
j=1

∫ t

0

ψ(s)
√
qjejdβj(s), ek

)2

=
∞∑
k=1

(
∞∑
j=1

∫ t

0

(
ψ(s)
√
qjej, ek

)
dβj(s))

2.

By Itô isometry, we get

E[‖ I(t) ‖2] =
∞∑

j,k=1

∫ t

0

E
(
ψ(s)
√
qjej, ek

)2
ds.

Since Qej = qjej, we have

E ‖ I(t) ‖2=
∞∑

j,k=1

∫ t

0

E
(
ψ(s)Q

1
2 ej, ek

)2
ds =

∫ t

0

E
∞∑

j,k=1

(
ψ(s)Q

1
2 ej, ek

)2
ds.

By the Parseval identity, we have

E ‖ I(t) ‖2=

∫ t

0

E
[ ∞∑
j=1

‖ ψ(s)Q
1
2 ej ‖2

]
ds =

∫ t

0

E ‖ ψ(s) ‖2
L2

0
ds.

Together these estimates complete the proof of Theorem 3.3.5.

Assumption 3.3.6. [62, page 450] (Lipschitz condition on G) For constants ζ ∈ (0, 2]

and L, we have that G : H → L2
0 satisfies

‖ A
ζ−1

2 G(u) ‖L2
0
≤ L(1+ ‖ u ‖H),

‖ A
ζ−1

2 (G(u1)−G(u2)) ‖L2
0
≤ L(‖u1 − u2 ‖H), ∀u, u1, u2 ∈ H.

3.4 Existence and Uniqueness of Stochastic PDEs

Theorem 3.4.1. [62, page 450] Assume that f : H 7→ H satisfies Assumption 3.3.2 and

G : H → L2
0 satisfies Assumption 3.3.6. Suppose that the initial data u0 ∈ L2(Ω,F0,P;H).

Then there exists a unique mild solution u(t) on [0,T] to (3.1.1) for any T > 0, such that

sup
t∈[0,T ]

‖ u(t) ‖L2(Ω,H)≤ CT (1+ ‖ u0 ‖L2(Ω,H)).
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Proof. Let H2,T denote the Banach space of H-valued predictable processes {u(t) : t ∈

[0, T ]} with norm ||u||H2,T
:= sup0≤t≤T ||u(t)||L2(Ω,H). For u ∈ H2,T , we define

(J u)(t) = e−tAu0 +

∫ t

0

e−(t−s)Af(u(s))ds+

∫ t

0

e−(t−s)AG(u(s))dW (s). (3.4.1)

A fixed point u(t) of J is an H-valued predictable process and obeys Definition 3.1.3 and

hence is a mild solution of (3.1.1). To show existence and uniqueness of the fixed point,

we show J is a contraction mapping from H2,T to H2,T .

Here we only show that J maps into H2,T . J u(t) is a predictable process because u0

is F0- measurable and the stochastic integral is a predictable process. (Theorem 2.6.3).

Let us show that ||J u||H2,T
<∞. First, we have

||e−tAu0||L2(Ω),H) ≤ ||u0||L2(Ω),H) <∞.

Second, we have∥∥∥∫ t

0

e−(t−s)Af(u(s))ds
∥∥∥
L2(Ω,H)

≤
∫ t

0

‖e−(t−s)Af(u(s)) ‖L2(Ω,H) ds

≤
∫ t

0

‖f(u(s)) ‖L2(Ω,H) ds

≤
∫ t

0

L
(
1+ ‖ u(s) ‖L2(Ω,H)

)
ds.

Third, by the isometry property, we have∥∥∥∫ t

0

e−(t−s)AG(u(s))dW (s)
∥∥∥2

L2(Ω,H)

=

∫ t

0

E ‖ A
(1−ξ)

2 e−(t−s)AA
(ξ−1)

2 G(u(s)) ‖2
L2

0
]ds

≤
[
L2(1 + sup

0≤s≤t
‖ u(s) ‖L2(Ω,H))

2
] ∫ t

0

‖ A
(1−ξ)

2 e−(t−s)A ‖2
L(H) ds.

By the smoothing property of the operator e−tA, we have

‖
∫ t

0

e−(t−s)AG(u(s))dW (s) ‖L2(Ω,H)≤ CL
(

1 + sup
0≤s≤t

‖ u(s) ‖L2(Ω,H)

)
.

Thus, for u ∈ H2,T , since all three terms are uniformly bounded over t ∈ [0, T ] in L2(Ω, H),

we get ‖ J u ‖H2,T
<∞. Hence J maps into H2,T .
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Lemma 3.4.2. (Regularity in time) [62] Let the Assumptions of Theorem 3.4.1 hold and

let u0 ∈ L2(Ω,F0, D(A)). For T > 0, ε ∈ (0, ξ), and θ1 := min( ξ
2
− ε, 1/2) there exists a

positive constant C such that

‖ u(t2)− u(t1) ‖L2(Ω,H)≤ C(t2 − t1)θ1 , 0 ≤ t1 ≤ t2 ≤ T.

Further, for ξ ∈ [1, 2] and θ2 := ξ
2
− ε there exists C > 0 such that

‖ u(t2)− u(t1) ‖L2(Ω,H)≤ C(t2 − t1)θ2 .

Proof. We write u(t2)− u(t1) = I + II + III, where

I := (e−t2A − e−t1A)u0,

II :=

∫ t2

0

(e−(t2−s)Af(u(s))ds−
∫ t1

0

(e−(t1−s)Af(u(s)) ds,

III :=

∫ t2

0

(e−(t2−s)AG(u(s))dW (s)−
∫ t1

0

(e−(t1−s)AG(u(s)) dW (s).

The estimations of I and II are easy to estimate. We only focus on III here and write

III = III1 + III2,

where

III1 :=

∫ t1

0

(
e−(t2−s)A − e−(t1−s)A

)
G(u(s) dW (s),

and

III2 :=

∫ t2

t1

(e−(t2−s)AG(u(s))dW (s).

We consider only the case ξ ∈ (0, 1) and analyze III1 and III2 separately. First let us

consider III1. Using Itô isometry property, we get

E ‖ III1 ‖2 =

∫ t1

0

E ‖
(
e−(t2−s)A − e−(t1−s)A

)
G(u(s)) ‖2

L2
0
ds

=

∫ t1

0

E ‖ A
1−ξ

2 (e−(t2−s)A − e−(t1−s)A)A
ξ−1

2 G(u(s)) ‖2
L2

0
ds.

Using Assumption 3.3.6 on G, we obtain

E ‖ III1 ‖2≤
(∫ t1

0

‖ A
1−ξ

2 (e−(t2−s)A−e−(t1−s)A) ‖2
L(H) ds

)(
1+ sup

0≤s≤t
‖ u(s) ‖L2(Ω,H)

)2

.
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Note that∫ t1

0

‖ (e−(t2−s)A − e−(t1−s)A)A
1−ξ

2 ‖2
L(H) ds

=

∫ t1

0

‖ A
1
2
−εe−(t1−s)AA

−ξ
2

+ε(I − e−(t2−t1)A) ‖2
L(H) ds

=

∫ t1

0

‖ A
1
2
−εe−(t1−s)A ‖2

L(H)‖ A
−ξ
2

+ε(I − e−(t2−t1)A) ‖2
L(H) ds.

Hence there exists C1, C2 > 0 such that, noting that 0 < ξ < 1,∫ t1

0

‖ (e−(t2−s)A − e−(t1−s)A)A
1−ξ

2 ‖2
L(H) ds ≤ (C2

1

t2ε1
ε

)(C2
2(t2 − t1)ξ−2ε).

Then we have, with C1 := K1K2LT
ε/
√
ε,

‖III1‖L2(Ω,H) =
(
EIII1‖2

) 1
2 ≤ C1(t2 − t1)

ξ
2
−ε
(

1 + sup
0≤s≤T

‖u(s)‖L2(Ω,H)

)
. (3.4.2)

Similarly we may estimate E[III2‖2].

The proof of Lemma 3.4.2 is complete.



Chapter 4

Fourier Spectral Methods for Solving

Parabolic Partial Differential

Equations

4.1 Introduction

In this chapter we will consider how to use MATLAB functions to solve parabolic equations

by using spectral methods. There are many ways to solve such equations by using MAT-

LAB functions. Here we will mainly consider how to use MATLAB functions ”dst.m”,

”idst.m” and ”fft.m”, ”ifft.m” to solve such equations [62].

We will consider how to use the spectral method for solving the following parabolic

equation

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= f(u(x, t)), 0 < x < 1, t > 0, (4.1.1)

u(0, t) = u(1, t) = 0, (4.1.2)

u(x, 0) = u0(x). (4.1.3)

Here u0(x) is the initial condition. f : R → R is a smooth function, for example f(u) =

u3 − u.

Denote,

A = − ∂2

∂x2
, D(A) = H1

0 (0, 1) ∩H2(0, 1).

31
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Then (4.1.1)-(4.1.3) can be written into the abstract form

du(t)

dt
+ Au(t) = f(u(t)), t > 0, (4.1.4)

u(0) = u0 (4.1.5)

It is well known that the operator A : D(A)→ H has the eigenvalues and eigenfunctions.

λj = j2π2, ej =
√

2sin(jπx), 0 < x < 1. (4.1.6)

We also know that {ej}+∞
j=1 is an orthonormal basis in H = L2(0, 1). Thus for any v ∈ H,

we have

v =
+∞∑
j=1

vjej,

where vj = (v, ej) =
∫ 1

0
v(x)ej(x)dx, j = 1, 2, 3, · · · , are called the Fourier coefficients of

v. Note that the solution u of (4.1.1)-(4.1.3) is in L2(0, 1). Therefore, the solution u of

(4.1.1)-(4.1.3) must have the form, for t > 0,

u(x, t) =
+∞∑
j=1

uj(t)ej(x).

To find the approximate solution of (4.1.4)-(4.1.5), we will truncate the series of (4.1.4)-

(4.1.5).

Denote by SN = L(e1, e2, . . . eN) the subspace spanned by the basis functions e1, e2, . . . eN .

The spectral method of (4.1.1)-(4.1.3) is to find, for t > 0, uN(t) ∈ SN such that

duN(t)

dt
+ AuN(t) = PNf(uN(t)), (4.1.7)

uN(0) = PNu0,

where PN : H → SN is defined by

PNv =
N∑
j=1

(v, ej)ej.

Assume that

uN(t) =
N∑
j=1

uNj (t)ej. (4.1.8)
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Replacing uN(t) in (4.1.7) by (4.1.8) and approximating PNf(uN(t)) with
∑N

j=1 f [uNj (t)]ej,

we then have

N∑
j=1

[ d
dt
uNj (t)

]
ej +

N∑
j=1

[
λju

N
j (t)

]
ej =

N∑
j=1

f [uNj (t)]ej,

which implies that

d

dt
uNj (t) + λju

N
j (t) = f [uNj (t)], j = 1, 2, 3 . . . . (4.1.9)

For each j, we can solve ordinary differential equation (4.1.9) to get uNj (t) at different

time t. Hence we obtain the approximate solution of (4.1.1)-(4.1.3).

We can also use the discrete sine Fourier transform MATLAB functions “dst.m ”and

“idst.m ”for solving (4.1.1)-(4.1.3). Let 0 = x0 < x1 < x2 < · · · < xJ−1 < xJ = 1 be the

space partition of [0, 1] and ∆x be the space stesize.

Let SJ−1 = L(e1, e2, . . . eJ−1). The spectral method for solving (4.1.1)-(4.1.3) is to find

uJ−1(t) ∈ SJ−1 such that

duJ−1(t)

dt
+ AuJ−1(t) = PJ−1f(uJ−1(t)), t > 0, (4.1.10)

uJ−1(0) = PJ−1u0. (4.1.11)

Let 0 = t0 < t1 < t2 · · · < tm < · · · < tM = T be a time partition of [0, T ] and ∆t be

the time stepsize. We define the following backward Euler method at t = tm,

UJ−1
m (x)− UJ−1

m−1(x)

∆t
+ AUJ−1

m (x) = f(UJ−1
m−1), (4.1.12)

UJ−1
0 (x) = PJ−1u0.

Assume that

UJ−1
m (x) =

J−1∑
j=1

UJ−1
m (j)ej(x), (4.1.13)

for some coefficient UJ−1
m (j).

Let x = xn = n∆x = n 1
J
, n = 1, 2, . . . , J − 1, we have

UJ−1
m (xn) =

J−1∑
j=1

UJ−1
m (j)

√
2sin(jπxn) =

J−1∑
j=1

UJ−1
m (j)

√
2sin(

jπn

J
).

By using “dst.m ”, we have
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
UJ−1
m (x1)

UJ−1
m (x2)

...

UJ−1
m (xJ−1)

 = dst



√
2UJ−1

m (1)
√

2UJ−1
m (2)
...

√
2UJ−1

m (J − 1)

 =
√

2 dst


UJ−1
m (1)

UJ−1
m (2)

...

UJ−1
m (J − 1)

 ,

and

idst


UJ−1
m (x1)

UJ−1
m (x2)

...

UJ−1
m (xJ−1)

 =



√
2UJ−1

m (1)
√

2UJ−1
m (2)
...

√
2UJ−1

m (J − 1)

 =
√

2


UJ−1
m (1)

UJ−1
m (2)

...

UJ−1
m (J − 1)

 .

Replacing UJ−1
m (x) and UJ−1

m−1(x) in (4.1.12) by (4.1.13), we get

J−1∑
j=1

UJ−1
m (j)ej(x) = (I + ∆tA)−1

[
UJ−1
m−1(x) + ∆tf(UJ−1

m−1)
]

= (I + ∆tA)−1
[ J−1∑
j=1

UJ−1
m (j)ej(x) + ∆t

J−1∑
j=1

f(UJ−1
m−1)(j)ej(x)

]
,

which implies that

UJ−1
m (j) = (I + ∆tλj)

−1UJ−1
m−1)(j) + (I + ∆tλj)

−1∆tf(UJ−1
m−1(j)). (4.1.14)

To determine
UJ−1
m (x1)

UJ−1
m (x2)

...

UJ−1
m (xJ−1)

 ,

we need to determine the coefficients
UJ−1
m (1)

UJ−1
m (2)

...

UJ−1
m (J − 1)


which we can be obtained by (4.1.14).
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Suppose we know

Y =


UJ−1
m−1(1)

UJ−1
m−1(2)

...

UJ−1
m−1(J − 1)

 ,

then we see that
UJ−1
m−1(x1)

UJ−1
m−1(x2)

...

UJ−1
m−1(xJ−1)

 = dst(Y ) ∗
√

2.

Further we note that

idst(y) = Y =


UJ−1
m−1(1)

UJ−1
m−1(2)

...

UJ−1
m−1(J − 1)

 ,

and

idst(f(y)) =


f(UJ−1

m−1(1))

f(UJ−1
m−1(2))

...

f(UJ−1
m−1(J − 1))

 .

Hence we get
UJ−1
m (1)

UJ−1
m (2)

...

UJ−1
m (J − 1)

 =
(
idst(y + ∆tf(y))./(1 + ∆t)


λ1

λ2

...

λJ−1


)
/
√

2,

and 
UJ−1
m (x1)

UJ−1
m (x2)

...

UJ−1
m (xJ−1)

 = dst


UJ−1
m (1)

UJ−1
m (2)

...

UJ−1
m (J − 1)

 ∗
√

2.
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Let us now consider the starting value. Assume that

UJ−1
0 (x) =

J−1∑
j=1

UJ−1
0 (j)ej(x),

with some coefficients UJ−1
0 (1), UJ−1

0 (2), . . . , UJ−1
0 (J − 1). For example, we assume that

UJ−1
0 (x) = e1(x) + 3e3(x). Then we have

Y =


UJ−1

0 (1)

UJ−1
0 (2)

...

UJ−1
0 (J − 1)

 =



1

0

3

0
...

0


,

and


UJ−1

0 (x1)

UJ−1
0 (x2)

...

UJ−1
0 (xJ−1)

 =
√

2dst



1

0

3

0
...

0


=


e1(x1) + 3e3(x1)

e1(x2) + 3e3(x2)
...

e1(xJ−1) + 3e3(xJ−1)

 .

Now let us calculate
UJ−1

1 (x1)

UJ−1
1 (x2)

...

UJ−1
1 (xJ−1)

 .

Noting that
UJ−1

0 (x1)

UJ−1
0 (x2)

...

UJ−1
0 (xJ−1)

 = dst(Y ) ∗
√

2,
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
UJ−1

1 (1)

UJ−1
1 (2)

...

UJ−1
1 (J − 1)

 =
[
idst(y + ∆tf(y))./(1 + ∆t)


λ1

λ2

...

λN−1


)
/
√

2,

we have
UJ−1

1 (x1)

UJ−1
1 (x2)

...

UJ−1
1 (xJ−1)

 = dst


UJ−1

1 (1)

UJ−1
1 (2)

...

UJ−1
1 (J − 1)

 ∗
√

2.

4.2 Some Matlab Functions

In MATLAB, there is a MATLAB function “dst.m ”which transforms a vector [62]

−→u =


u1

u2

...

uJ−1


into the discrete sine coefficients

−→y =


y1

y2

...

yJ−1

 ,

that is, −→y = dst(−→u ), where

yk =
J−1∑
n=1

un sin
kπn

J
, k = 1, 2, · · · , J − 1.

The inverse discrete sine transform MATLAB function ”idst.m” satisfies −→u = idst(−→y ),

where

un =
2

J

J−1∑
k=1

yk sin
kπn

J
.
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Thus, given a vector

−→u =


u1

u2

...

uJ−1


we can find the discrete sine coefficients −→y . The inverse discrete sine transform then

transforms −→y back to −→u . This is very useful when we solve partial differential equations

by using the spectral method.

To understand how to use ”dst.m” and ”idst.m” to solve partial differential equation,

let us first consider the following equation,

− u′′(x) = f(x), 0 < x < 1, (4.2.1)

u(0) = u(1) = 0.

Let

A = − ∂2

∂x2
, D(A) = H1

0 (0, 1) ∩H2(0, 1).

It is well-known that A has eigenvalues λj = j2π2 and eigenfunctions ej =
√

2 sin(jπx).

Further {ej}+∞
j=1 is an orthonormal basis in L2(0, 1). Then the equation (4.2.1) can be

written into

Au = f. (4.2.2)

The solution u of (4.2.2) must have the form

u(x) =
+∞∑
j=1

ûjej(x), (4.2.3)

where ûj, j = 1.2, 3 · · · are the Fourier coefficients. The spectral method of (4.2.2) is to

find uJ−1(x) ∈ SJ−1 such that

AuJ−1 = PJ−1f, (4.2.4)

where SJ−1 = span{e1, e2 · · · , eJ−1}. Here PJ−1 : H → SJ−1 is the orthogonal projection

defined by

PJ−1v =
J−1∑
j=1

v̂jej.
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Let

uJ−1(x) =
J−1∑
j=1

ûjej =
√

2
J−1∑
j=1

ûjsin(jπx).

Hence we have

uJ−1(xk) =
√

2
J−1∑
j=1

ûjsin
(jπk)

J
, k = 1, 2, · · · , J − 1,

which may be written as

uJ−1(xk) =
(√

2
J

2

)[ 2

J

J−1∑
j=1

ûjsin
(jπk)

J

]
, k = 1, 2, · · · , J − 1.

By using the MATLAB functions “dst.m ”and “idst.m ”, we have
uJ−1(x1)

uJ−1(x2)
...

uJ−1(xJ−1)

 = (
√

2
J

2
) idst


û(1)

û(2)
...

û(J − 1)

 .

Taking the discrete sine transform in both sides, we get

dst


uJ−1(x1)

uJ−1(x2)
...

uJ−1(xN−1)

 = (
√

2
J

2
)


û(1)

û(2)
...

û(J − 1)

 .

Thus we obtain the relation between uJ−1(xk), k = 1, 2, · · · , J − 1 and its Fourier sine

coefficients ûj, j = 1, 2, · · · , J − 1.

Now let us solve (4.2.4). Assume that

uJ−1 =
J−1∑
j=1

ûjej, PJ−1f =
J−1∑
j−1

f̂jej. (4.2.5)

Substituting these into (4.2.4), we get

J−1∑
j−1

ûj(Aej) =
J−1∑
j−1

f̂jej, (4.2.6)

or

J−1∑
j−1

(λjûj)ej =
J−1∑
j−1

f̂jej, (4.2.7)
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which implies that

ûj = λ−1
j f̂j, j = 1, 2, · · · , J − 1. (4.2.8)

Since f(x) is given, we may have PJ−1f(xk) ≈ f(xk), k = 1, 2, . . . , J −1. The Fourier sine

cofficients f̂j can then be obtained by (4.2),
f̂(1)

f̂(2)
...

f̂(J − 1)

 = (
√

2
J

2
) dst


f(x1)

f(x2)
...

f(xJ−1)

 .

By (4.2.8), we get ûj = λ−1
j f̂j. Hence we have

uJ−1(x1)

uJ−1(x2)
...

uJ−1(xJ−1)

 = (
√

2
J

2
) idst


û(1)

û(2)
...

û(J − 1)

 .

Based on the detailed analysis above, we now give the following algorithm.

Step 1: Calculate

f =


f(x1)

f(x2)
...

f(xJ−1)

 .

Step 2: Find the Fourier sine coffeicients

f̂ =


f̂(1)

f̂(2)
...

f̂(J − 1)


by

f̂ = (
√

2
J

2
)−1 dst


f(x1)

f(x2)
...

f(xJ−1)

 .
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Step 3: Find the Fourier coefficients

û =


û(1)

û(2)
...

û(J − 1)


by û(j) = λ−1

j f̂(j).

Step 4: Find the solution uJ−1(xk), k = 1, 2, · · · , J − 1 by
uJ−1(x1)

uJ−1(x2)
...

uJ−1(xN−1)

 = (
√

2
J

2
) idst


û(1)

û(2)
...

û(J − 1).

 .

For the reader’s convenience, below we include the codes for solving partial differential

equation by using the spectral method.

clear

T=1; Dt=0.01; M1-T/Dt;

A=1;

%epsilon=1e-03;

J=512; h=a/J; x=[h:h:(J-1)*h];

lambda=pi*[1:(J-1)];

M=lambda.^2;

EE=1./(1+dT*m);

u0=sin(pi*x);

for m=1;M1

u0_hat=(sqrt(2)*J/2)^(-1)*DST(U0);

%F_U0=U0-U0.^3; %f(u) = u-u^3

f_u0=exp(m*Dt)*sin(pi*x) + exp(m*Dt)*sin(pi*x)*(pi^2);

f_u0_hat=(sqrt(2)*J/2)^(-1)*dst(f_u0);

u1_hat=(u0_hat + Dt*f_u0_hat).*EE;

u1=(sqrt(2)*J/2)*idst(u1_hat);
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u0=u1;

end

u_exact=exp(1)*sin(pi*x);

error=u0-u_exact;

figure(1)

plot(x,u0)

title(’approximate solution’)

xlabel(’x’)

ylabel(’exact solution’)

figure(2)

plot(x,error)

title(error’)

xlabel(’x’)

ylabel(’error’)



Chapter 5

Fourier Spectral Methods for Some

Linear Stochastic Space Fractional

Partial Differential Equations

5.1 Introduction

Recently stochastic space fractional partial differential equations attract a lot of attention

in view of their modeling applications. Fractional derivative is a powerful instrument for

the description of memory and hereditary properties of different substance. Here we

consider numerical methods for solving some linear stochastic space fractional partial

differential equation in 1- dimensional case.

Fourier spectral methods for solving some linear stochastic space fractional partial

differential equations perturbed by space-time white noises in one dimensional case are

introduced and analyzed. The space fractional derivative is defined by using the eigen-

values and eigenfunctions of Laplacian subject to some boundary conditions. We approx-

imate the space-time white noise by using piecewise constant functions and obtain the

approximated stochastic space fractional partial differential equations. The approximated

stochastic space fractional partial differential equations are then solved by using Fourier

spectral methods. Error estimates in L2-norm are obtained, and numerical examples are

given.
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We will consider now Fourier spectral methods for solving linear stochastic space

fractional partial differential equation:

∂u(t, x)

∂t
+ (−∆)αu(t, x) =

∂2W (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1, (5.1.1)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (5.1.2)

u(0, x) = u0(x), 0 < x < 1. (5.1.3)

Here (−∆)α, 1
2
< α ≤ 1, is the fractional Laplacian and ∂2W (t,x)

∂t∂x
is the mixed second

order derivative of the Brownian sheet [94]. It is well known that the Laplacian −∆

has eigenpairs (λj, ej) with λj = j2π2, ej =
√

2 sin jπx, j = 1, 2, 3 · · · subject to the

homogeneous Dirichlet boundary conditions on (0, 1), i.e., ej(0) = ej(1) = 0 and

−∆ej = λjej, j = 1, 2, 3, . . . .

Let H = L2(0, 1) with inner product (·, ·) and norm || · ||. For any r ∈ R, we denote:

Hr
0 := {v : v =

∞∑
j=1

(v, ej)ej,
∞∑
j=1

λrj(v, ej)
2 <∞}, (5.1.4)

with norm:

|v|r =
( ∞∑
j=1

λrj(v, ej)
2
) 1

2
. (5.1.5)

Then, for any v ∈ H2α
0 (0, 1), 1

2
< α ≤ 1, we have

(−∆)αv =
∞∑
j=1

(v, ej)λ
α
j ej. (5.1.6)

Space fractional partial differential equations are widely used to model complex phenom-

ena, for example, quasi-geostrophic flows, fast roating fluids, the dynamics of the fron-

togenesis in meteorology, diffusion in fractal or disordered medium, pollution problems,

mathematical finance and transport problems.

Let us here consider two examples, which apply the fractional Laplacian in the physical

models. The first example is the surface quasi-geostrophic (SQG) equation,

∂tθ +−→u .∇θ + k(−∆)αθ = 0,

where k ≥ 0 and α > 0, θ = θ(x1, x2, t) denotes the potential temperature, −→u = (u1, u2)

is the velocity field determined by θ . When k > 0, the SQG equation takes into account
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the dissipation generated by a fractional Laplacian. The SQG equation with k > 0 and

α = 1
2

arises in geophysical studies of strongly-rotating fluids. For the dissipative SQG

equation, α = 1
2

appears to be a critical index. In the sub-critical case with α > 1
2
, the

dissipation is sufficient to control the nonlinearity and global regularity is a consequence

of global a priori bound. In the critical case with α = 1
2
, the global regularity issue is

more delicate. There are few theoretical results for the supercritical case α < 1
2

in the

literature [20].

The second example is about the wave propagation in complex solids, especially vis-

coelastic materials (for example, polymers) [12]. In this case, the relaxation function has

the form k(t) = ct−v, 0 < v < 1, c ∈ R, instead of the exponential form known in the

standard models. This polynomial relaxation is due to the non-uniformity of the material.

The far field is then described by a Burgers equation with the leading operator (−∆)
1+v

2

instead of the Laplacian,

∂tu = −(−∆)
1+v

2 u+ ∂x(u
2).

This equation also describes the far-field evolution of acoustic waves propagating in a

gas-filled tube with a boundary layer.

Frequently, the initial value or the coefficients of the equation are random; therefore,

it is natural to consider the stochastic space fractional partial differential equations. The

existence, uniqueness and regularities of the solution of stochastic space fractional partial

differential equations have been extensively studied, see, e.g., [11], [16], [12], [23]. In

this work, we will focus on the case 1
2
< α ≤ 1, since the existence, uniqueness and

the regularity of the solution in this case is well understood in the literature, see [23,

Theorem 1.3]. However, the numerical methods for solving space fractional stochastic

partial differential differential equations are quite restricted even for the case 1
2
< α ≤ 1.

Debbi and Dozzi [23] introduced a discretization of the fractional Laplacian and used it to

obtain an approximation scheme for fractional heat equation perturbed by multiplicative

cylindrical white noise.To the best of our knowledge, [23] is the only existing paper in the

literature that deals with the numerical approach of this kind of problems. In this work, we

will use the ideas developed in [2] to consider the numerical methods for solving stochastic

space fractional partial differential equation, see also [17], [51]. We first approximate
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the space-time white noise by using piecewise constant functions and then obtain the

approximate solution û(t) of the exact solution u(t). Finally, we provide error estimates

in the L2- norm for u(t)− û(t).

For the deterministic space fractional partial differential equations, many numerical

methods are available in the literature. There are two approaches to define the fractional

Laplacian. One approach is by using the eigenvalues and eigenfunctions of Laplacian

−(∆)αv, 1
2
< α ≤ 1 subject to the boundary conditions as in (5.1.6). Another approach

is by using the left-handed, right-handed Riemann-Liouville fractional derivatives. For

the deterministic space fractional partial differential equations defined by the Riemann-

Liouville fractional derivatives, many numerical methods are available, finite difference

method, finite element method and spectral methods. In this work, we will use Fourier

spectral method to solve the stochastic space fractional partial differential equations.

The main advantage of this approach is that it gives a full diagonal representation of the

fractional operator, being able to achieve spectral convergence regardless of the fractional

power in the problem. By using the integral for the function v̄, where v̄ is defined on the

whole real line R and is the extension function of v,

v̄(x) =

 v(x), 0 < x < 1,

0, x /∈ (0, 1),

we define

(∆)αv̄(x) = Cα

∫
R−{0}

2v̄(x) + v̄(x+ y)− v̄(x− y)

|y|1+2α
dy, x ∈ R,

where Cα is a positive constant depending on α. We then define, [81], [50],

(∆)αv̄(x) = F−1
(
|ξ|2α(F(v̄))(ξ)

)
, x ∈ R,

where F and F−1 denotes the Fourier and inverse Fourier transforms, respectively. For

v(x), x ∈ (0, 1) we define the fractional Laplacian by

(−∆)αv(x) = (−∆)αv̄(x).
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It is easy to show that for some suitable function ω(x), x ∈ R [98],

(−∆)αω(x) = F−1
(
|ξ|2αF(ω)(ξ)

)
=

1

2 cos(πα)

(
R
−∞D

2α
x w(x) + R

xD
2α
∞w(x)

)
,

where R
−∞D

β
xw(x) and R

xD
β
∞w(x), 1 < β < 2 are called Riemann-Liouville fractional

derivatives define by

R
−∞D

β
xw(x) =

1

Γ(2− β)

d2

dx2

∫ x

−∞
(x− y)1−βω(y)dy,

R
xD

β
∞w(x) =

1

Γ(2− β)

d2

dx2

∫ ∞
x

(y − x)1−βω(y)dy.

Hence, for the function v(x) defined on the bounded interval (0, 1), we have

(−∆)αv(x) =
1

2 cos(πα)

(
R
0 D

2α
x v(x) +R

x D
2α
1 v(x)

)
, x ∈ (0, 1), (5.1.7)

which is also called the Riesz fractional derivative.

We note that Definitions (5.1.6) and (5.1.7) are equivalent [81]. For the determin-

istic space fractional partial differential equations where the space fractional derivative

is defined by (5.1.7), or the Riemann-Liouville space fractional deriavative, or the Ca-

puto space fractional derivative, many numerical methods are available: finite difference

methods, [41], [69], [91], [89], finite element methods [31], [45] and spectral methods [57],

[58].

For the deterministic space fractional partial differential equations, where the space

fractional derivative is defined by (5.1.6), some numerical methods are also available: the

matrix transfer method (MTT), [41], [15] and the Fourier spectral method [14]. In this

work, we will use Fourier spectral methods to solve the approximated stochastic space

fractional partial differential equations. The main advantage of this approach is that

it gives a full diagonal representation of the fractional operator, being able to achieve

spectral convergence regardless of the fractional power in the problem.

Let 0 = x0 < x1 < x2 < · · · < xJ = 1 be the space partition of (0,1) and h the space

step size. Let 0 = t0 < t1 < t2 < · · · < tN = T be the time partition of (0,T) and k the

time step size. To find the approximate solution of (5.1.1)-(5.1.3), we first approximate

the space-time white noise ∂2W (t,x)
∂t∂x

by using a piecewise constant function ∂2Ŵ (t,x)
∂t∂x

defined

by, with n = 1, 2, 3, . . . , N, j = 1, 2, . . . , J, [2],

∂2Ŵ (t, x)

∂t∂x
:=

ηn,j√
kh
, tn−1 ≤ t ≤ tn, xj−1 ≤ x ≤ xj, (5.1.8)
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where ηnj ∈ N (0, 1) is an independently and identically distributed random variable and

ηn,j =
1√
kh

∫ tn

tn−1

∫ xj

xj−1

dW (t, x). (5.1.9)

Hence we have

∂2Ŵ (t, x)

∂t∂x
:=

1√
kh

∫ tn

tn−1

∫ xj

xj−1

dW (t, x), on [tn−1, tn]× [xj−1, xj]. (5.1.10)

We also note that [2]∫ tn

tn−1

∫ xj

xj−1

dŴ (t, x) =

∫ tn

tn−1

∫ xj

xj−1

∂2Ŵ (t, x)

∂t∂x
dxdt.

The solution u(t, x) of (5.1.1)-(5.1.3) can be approximated by û(t, x), which solves the

following:

∂û(t, x)

∂t
+ (−∆)αû(t, x) =

∂2Ŵ (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1, (5.1.11)

û(t, 0) = û(t, 1) = 0, 0 < t < T, (5.1.12)

û(0, x) = u0(x), 0 < x < 1. (5.1.13)

Note that ∂2Ŵ (t,x)
∂t∂x

is a function in L2((0, T )× (0, 1)) and therefore we can solve (5.1.11)-

(5.1.13) by using any appropriate numerical method for deterministic space fractional

partial differential equations. In Theorem 5.2.2 we prove that, if 1
2
< α ≤ 1, then we have

E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2 dxdt ≤ C(k1− 1
2α + h2k

2α−3
2α ). (5.1.14)

Let us now introduce the Fourier spectral method for solving (5.1.11)-(5.1.13). Let J be

a positive integer, and denote SJ = span{e1, e2 . . . , eJ}.

Define by PJ : H → SJ the projection from H to SJ ,

PJv :=
J∑
j=1

(v, ej)ej. (5.1.15)

The Fourier spectral method for solving (5.1.11)-(5.1.13) is to find ûJ(t) ∈ SJ , such that

∂ûJ(t, x)

∂t
+ (−∆)αûJ(t, x) = PJ

∂2Ŵ (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1, (5.1.16)

ûJ(t, 0) = ûJ(t, 1) = 0, 0 < t < T, (5.1.17)

ûJ(0, x) = PJu0(x), 0 < x < 1. (5.1.18)
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In Theorem 5.3.1 we prove that, with 1
2
< α ≤ 1,

||û(t)− ûJ(t)|| ≤ C||u0 − PJu0||+ C
1

(J + 1)α

(∫ t

0

||f̂(s)||2ds
) 1

2
, (5.1.19)

where ‖ · ‖ denotes the norm in L2(0, 1) space.

Combining Theorems 5.2.2 with 5.3.1, we have

E
∫ T

0

∫ 1

0

(u(t, x)− ûJ(t, x))2 dxdt ≤C(k1− 1
2α + h2k

2α−3
2α ) + C||u0 − PJu0||2

+ C
1

(J + 1)2α (k−1− 1
2α + h−1k−1).

5.2 Approximate the Noise and Regularity of the Solu-

tion

Consider the stochastic space fractional partial differential equation:

∂u(t, x)

∂t
+ (−∆)αu(t, x) = f(t, x), 0 < t < T, 0 < x < 1, (5.2.1)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (5.2.2)

u(0, x) = u0(x), 0 < x < 1, (5.2.3)

where f(t, x) = ∂2W (t,x)
∂t∂x

denotes the mixed second order derivative of the Brownian sheet

[2]. There is no strong solution of (5.2.1)-(5.2.3) since f(t, x) = ∂2W (t,x)
∂t∂x

/∈ L2((0, T ) ×

(0, 1)).

It is well known that the mild solution of (5.2.1)-(5.2.3) has the following form, [23],

[78],

u(t, x) =

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ 1

0

∫ t

0

Gα(t− s, x, y)dW (s, y),

where

Gα(t, x, y) =
∞∑
j=1

e−λ
α
j tej(x)ej(y),

and the stochastic integral
∫ t

0

∫ 1

0
Gα(t − s, x, y) dW (s, y) is well-defined. Such stochastic

integral has the following properties.
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First, if S = {(s, y) : a ≤ s < b, c ≤ y < d} is a rectangle, then∫ d

c

∫ b

a

dW (s, y) =

∫ d

c

∫ b

a

∂2W

∂s∂y
(s, y) dsdy = W (S)

= W (b, d)−W (a, d)−W (b, c) +W (a, c),

where W (S) is Gaussian with zero means and variance |S| and |S| is the area of S.

Second, if χs is the characteristic function of rectangle S, then∫ T

0

∫ b

a

χs dW (s, y) = W (S), for S ⊂ (0, T )× (a, b).

Third, if E
( ∫ T

0

∫ b
a
f(s, y) dsdy

)
<∞, then

E
(∫ T

0

∫ b

a

f(s, y) dW (s, y)
)2

= E
(∫ T

0

∫ b

a

f 2(s, y) dsdy
)
.

We have the following existence and uniqueness theorem, see, e.g., [23], [24].

Theorem 5.2.1. [24, Theorem 1.3] Let 1
2
< α ≤ 1 and β > 0. Let u0 be a Hβ

0 (0, 1)-

valued F0-measurable function, such that

E||u0||p
Hβ

0 (0,1)
<∞

for some p > 4α
2α−1

. Then (5.2.1)-(5.2.3) has a unique mild solution u such that, for any

0 ≤ θ < min{2α−1
2
− 2α

p
, β},

E sup0≤t≤T ||u(t)||p
Hθ

0 (0,1)
<∞.

Our strategy is to approximate the solution u(t, x) of (5.2.1)-(5.2.3) by û(t, x), which

satisfies the following problem:

∂û(t, x)

∂t
+ (−∆)αû(t, x) = f̂(t, x), 0 < t < T, 0 < x < 1, (5.2.4)

û(t, 0) = û(t, 1) = 0, 0 < t < T, (5.2.5)

û(0, x) = u0(x), 0 < x < 1. (5.2.6)

Here f̂(t, x) = ∂2Ŵ (t,x)
∂t∂x

is defined by (5.1.8). The solution of (5.2.4)-(5.2.6) has the form

of, see, e.g., [2],

û(t, x) =

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y). (5.2.7)
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Theorem 5.2.2. Let u and û be the solutions of (5.2.1)-(5.2.3) and (5.2.4)-(5.2.6) re-

spectively. Assume that u0 ∈ H and 1
2
< α ≤ 1. Then we have

E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt ≤ C(k1− 1
2α + h2k

2α−3
2α ).

Remark 1. When α = 1, we obtain the same estimates in [2], [28], that is,

E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt ≤ C(k
1
2 + h2k−

1
2 ).

We shall prove Theorem 5.2.2. To do this, we need the following lemmas.

Lemma 5.2.3. Let 1 < β ≤ 2. We have

∞∑
n=1

e−n
βknβ ≤ Ck−1− 1

β , (5.2.8)

∞∑
n=1

1− e−nβk

nβ
≤ Ck1− 1

β , (5.2.9)

∞∑
n=1

e−n
βk

nβ−2
≤ Ck

β−3
β , (5.2.10)

∞∑
n=1

(1− e−nβk)2 ≤ Ck−
1
β , (5.2.11)

∞∑
n=1

(1− e−nβk)2

n2β
≤ Ck

2β−1
β , (5.2.12)

j−2∑
l=0

e−n
β

(tj − tl+1) ≤ Ck−1n−β, j ≥ 2. (5.2.13)

Proof. We have, with the variable change xβk = yβ,

∞∑
n=1

e−n
βknβ ≤ C

∫ ∞
1

e−x
βkxβdx = C

∫ ∞
k

1
β

e−y
β

(k−1yβ)k−
1
β dy (5.2.14)

≤ C

∫ ∞
0

e−y
β

k−1− 1
β yβdy ≤ Ck−1− 1

β . (5.2.15)
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Similarly we can show (5.2.9)-(5.2.12). For (5.2.13), noting that 1 + x < ex, x > 0, we

derive

j−2∑
l=0

e−n
β

(tj − tl+1) ≤ e−n
βk + (e−n

βk)2 + · · · ≤ e−n
βk(1 + e−n

βk + · · · ) (5.2.16)

≤ e−n
βk 1

1− e−nβk
=

1

enβk − 1
≤ C(nβk)−1 ≤ Ck−1n−β. (5.2.17)

The proof of Lemma 5.2.3 is now complete.

We also need the following isometry property for the approximated space-time white

noise W (s, y), see, e.g.,[94].

Lemma 5.2.4. We have

E
∣∣∣ ∫ T

0

∫ 1

0

f(s, y)dW (s, y)
∣∣∣2 = E

∫ T

0

∫ 1

0

f 2(s, y)dsdy.

Similarly, we have the following isometry property for the approximated space-time white

noise Ŵ (s, y), see [2].

Lemma 5.2.5. We have

E
∣∣∣ ∫ T

0

∫ 1

0

f(s, y)dŴ (s, y)
∣∣∣2 = E

∫ T

0

∫ 1

0

f 2(s, y)dsdy.
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Proof. We have, by (5.1.10), Lemma 5.2.4 and the Cauchy-Schwarz inequality,

E|
∫ T

0

∫ 1

0

f(s, y)dŴ (s, y)|2 = E|
∫ T

0

∫ 1

0

f(s, y)
∂2Ŵ (s, y)

∂s∂y
dyds|2

= E[
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

f(s, y)
1

kh

∫ ti+1

ti

∫ xj+1

xj

dW (r, z)dsdy]2

= E|
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

( 1

kh

∫ ti+1

ti

∫ xj+1

xj

f(s, y)dsdy
)
dW (r, z)]2

= E
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

( 1

kh

∫ ti+1

ti

∫ xj+1

xj

f(s, y)dsdy
)2

dr dz

≤ E
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

[ 1

kh

∫ ti+1

ti

∫ xj+1

xj

f(s, y)dsdy
]2

drdz

≤ E
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

[ 1

kh

∫ ti+1

ti

∫ xj+1

xj

f 2(s, y)dsdy
]
drdz

≤ E
N−1∑
j=0

M−1∑
i=0

∫ ti+1

ti

∫ xj+1

xj

f 2(s, y)dsdy

= E
∫ T

0

∫ 1

0

f 2(s, y) dsdy.

The proof of Lemma 5.2.5 is complete.

Proof of Theorem 5.2.2. We shall prove

E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt ≤ C(k1− 1
2α + h2k

2α−3
2α ). (5.2.18)

Note that

u(t, x) =

∫ 1

0

Gα(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y) dW (s, y), (5.2.19)

û(t, x) =

∫ 1

0

Gα(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y). (5.2.20)

Here

Gα(t, x, y) =
+∞∑
j=1

e−λ
α
j tej(x)ej(y).

Subtracting equation (5.2.20) from (5.2.19), we get

E
∫ T

0

∫ 1

0

|u(x, t)− û(x, t)|2dxdt

= E
∫ T

0

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2

dxdt.
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By using inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), ∀a, b, c ∈ R, we get,

E
∫ T

0

∫ 1

0

|u(x, t)− û(x, t)|2dxdt

≤ 3E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

{[∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)−
∫ t

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)
]2}

dxdt

= 3(I + II + III).

We first estimate II. Using the approximation of the space-time white noise (5.1.8), we

have, taking also account (5.1.10),

II =E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)

−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)]2dxdt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

Gα(tj − r, x, z)dW (r, z)

−
j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

Gα(tj − s, x, y)
1

kh

∫ tl+1

tl

∫ xi+1

xi

dW (r, z)dyds
]2

dxdt.

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi(
Gα(tj − r, x, z)dW (r, z)− 1

kh

∫ tl+1

tl

∫ xi+1

xi

Gα(tj − s, x, y)dyds
)
dW (r, z)

]2

dxdt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl∫ xi+1

xi

( 1

kh

∫ tl+1

tl

∫ xi+1

xi

(
Gα(tj − r, x, z)−Gα(tj − s, x, y)

)
dyds

)
dW (r, z)

]2

dxdt.

By using the following isometry property and Cauchy-Swartz Inequality

E
[ ∫ t

0

f(s)dW (s)
]2

= E

∫ t

0

f 2(s)ds,

[ ∫ b

a

f(x)g(x)dx
]2

≤ [

∫ b

a

f 2(x)dx][

∫ b

a

g2(x)dx],
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we get

II =E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi( 1

kh

∫ tl+1

tl

∫ xi+1

xi

[Gα(tj − r, x, z)−Gα(tj − s, x, y)
)
dy ds

)2

dzdrdxdt

=E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

(
Gα(tj − r, x, z)−Gα(tj − s, x, y)

)2

dydsdzdrdxdt.

Further, we have

II = E
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

(
e−λ

α
n(tj−r)en(z)− e−λαn(tj−s)en(y)

)2

dy ds dz dr dt

= E
N−1∑
j=0

∫ tj+1

tj

[ j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

e−2λαntj
(
eλ

α
nren(z)− eλαnsen(y)

)2

dy ds dz dr dt

≤ 2E
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

e−2λαntj(en(z)− en(y))2eλ
α
nrdydsdzdrdt

+ 2
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

e−2λαntje2
n(y)(eλ

α
nr − eλαns)2 dydsdzdrdt

= 2II1 + 2II2.
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For II2, since e2
n(y) ≤ 1 and

∑J−1
i=0

∫ xi+1

xi
dx = 1, we have

II2 ≤ E
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

e−2λαntj(eλ
α
nr − eλαns)2dy ds dz dr dt

= E
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

∫ tl+1

tl

∞∑
n=1

e−2λαntj(eλ
α
nr − eλαns)2 ds dr dt

=
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ r

tl

∞∑
n=1

e−2λαntj(eλ
α
nr − eλαns)2 ds

]
dr dt

+
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

r

∞∑
n=1

e−2λαntj
(
eλ

α
nr − eλαns

)2

ds
]
dr dt

= II21 + II22.

For II21, we have

II21 =
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ r

tl

∞∑
n=1

e−2λαn(tj−r)
(

1− e−λαn(r−s)
)2

ds
]
drdt

≤
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ r

tl

∞∑
n=1

e−2λαn(tj−r)
(

1− e−λαnk
)2

ds
]
drdt

≤
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

tl

∞∑
n=1

e−2λαn(tj−r)(1− e−λαnk)2 ds
]
drdt

=
N−1∑
j=0

∫ tj+1

tj

[ ∫ tj

0

∞∑
n=1

e−2λα(tj−r)(1− e−λαnk)2 dr
]
dt.

We will show that

N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

e−2λαn(tj−r)(1− eλαnk)2 drdt ≤ Ck1− 1
2α . (5.2.21)

Assume (5.2.21) holds at the moment, we then have

II21 ≤ Ck1− 1
2α .

We now show (5.2.21). Note that 1− e−x ≤ Cx for x > 0 and 1− e−x ≤ 1 for x > 0, we
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obtain
N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

e−2λαn(tj−r)(1− e−λαnk)2 dr dt

=
N−1∑
j=0

∫ tj+1

tj

∫ tj−1

0

∞∑
n=1

e−2λαn(tj−r)(1− e−λαnk)2 dr dt

+
N−1∑
j=0

∫ tj+1

tj

∫ tj

tj−1

∞∑
n=1

e−2λαn(tj−r)(1− e−λαnk)2 dr dt

≤
N−1∑
j=0

∫ tj+1

tj

∫ tj−1

0

∞∑
n=1

e−2λαn(tj−r)(λαnk)2 dr dt

+
N−1∑
j=0

∫ tj+1

tj

∫ tj

tj−1

∞∑
n=1

e−2λαn(tj−r).12drdt

≤ C

N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

e−2λαn(k) − e−2λαntj

2λαn
(λαnk)2dt+

N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1− e−2λαnk

2λαn
dt

≤ C
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

e−2λαnk

2λαn
(λαnk)2 dt+

N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1− e−2λαnk

2λαn
dt.

Applying (5.2.8) and (5.2.9), we get

N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

e−2λαn(tj−r)(1− e−λαnk)2 dr dt ≤ Ck1− 1
2α ,

which is (5.2.21).

For II22, we have

II22 =
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

r

∞∑
n=1

e−2λαntj(eλ
α
nr − eλαns)2ds

]
drdt

=
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

r

∞∑
n=1

e−2λαn(tj−s)(1− e−λαn(s−r))2ds
]
drdt

≤
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

r

∞∑
n=1

e−2λαn(tj−s)(1− e−λαnk)2ds
]
drdt

≤
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

1

k

[ ∫ tl+1

tl

∞∑
n=1

e−2λαn(tj−s)(1− e−λαnk)2ds
]
drdt

=
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
n=1

e−2λαn(tj−s)(1− e−λαnk)2 dsdt

=
N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

e−2λαn(tj−s)(1− e−λαnk)2 dsdt.
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and hence, by (5.2.21), we drive

II22 ≤ Ck1− 1
2α .

For II1, we have

II1 =
N−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

M−1∑
i=0

∫ tl+1

tl

∫ xi+1

xi

1

kh

∫ tl+1

tl

∫ xi+1

xi

∞∑
n=1

e−2λαntj(en(z)− en(y))2e2λαnrdydsdzdrdt

≤
N−1∑
j=0

∫ tj+1

tj

∫ tj−1

0

M−1∑
i=0

∫ xi+1

xi

1

h

∫ xi+1

xi

∞∑
n=1

e−2λαntj(en(z)− en(y))2e2λαnrdydzdrdt

+
N−1∑
j=0

∫ tj+1

tj

∫ tj

j−1

M−1∑
i=0

∫ xi+1

xi

1

h

∫ xi+1

xi

∞∑
n=1

e−2λαntj(en(z)− en(y))2e2λαnrdydzdrdt.

Noting that en(z) =
√

2 sin(nπz), | sinx− sin y| ≤ |x− y| and | sinx− sin y| ≤ 2, we have

II1 ≤
N−1∑
j=0

∫ tj+1

tj

∫ tj−1

0

M−1∑
i=0

∫ xi+1

xi

1

h

∫ xi+1

xi

∞∑
n=1

e−2λαntj(2nπh)2e2λαnr dydzdrdt

+
N−1∑
j=0

∫ tj+1

tj

∫ tj

j−1

M−1∑
i=0

∫ xi+1

xi

1

h

∫ xi+1

xi

∞∑
n=1

e−2λαntj(8e2λαnr) dydzdrdt

≤ C
N−1∑
j=0

∫ tj+1

tj

∫ tj−1

0

∞∑
n=1

e−2λαn(tj−r)(nπh)2 dr dt+ C
N−1∑
j=0

∫ tj+1

tj

∫ tj

j−1

∞∑
n=1

e−2λαn(tj−r) drdt

= C

N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

e−2λαnk − e−2λαntj

λαn
(nπh)2dt+ C

N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1− e−2λαnk

λαn
dt

= C

∞∑
n=1

e−2λαnk

λα−1
n

h2 + C
∞∑
n=1

1− e−2λαnk

λαn
.

Applying (5.2.10) and (5.2.9), we finally get

II1 ≤ C(k1− 1
2α + h2k

2α−3
2α ). (5.2.22)
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For I, we have

I = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)

−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)
]2

dx dt

≤ 2E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(t− s, x, y)−Gα(tj − s, x, y)dW (s, y)
]2

dx dt

+ 2E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dx dt

≤ 2E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

(Gα(t− s, x, y)−Gα(tj − s, x, y))
]2

dy ds dx dt

+ 2E
N−1∑
j=0

∫ ttj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)
]2

dy ds dx dt

= 2I1 + 2I2.

Now for I1, we have, by using isometry property and noting that (en, em) = δnm, n,m =

1, 2, . . . ,

I1 = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

∫ tj

0

∫ 1

0

(
Gα(t− s, x, y)−Gα(tj − s, x, y)

)2

dy ds dx dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

∫ tj

0

∫ 1

0

[ ∞∑
n=1

(e−λ
α
n(t−s) − e−λαn(tj−s))en(x)en(y)

]2

dy ds dx dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

(e−λ
α
n(t−s) − e−λαn(tj−s))2 ds dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
n=1

e−2λαn(t−s)(1− e−λαn(tj−t))2 ds dt

= E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

e−2λαn(t−tj) − e−2λαnt

2λαn

(
1− e−λαn(tj−t)

)2

dt

= E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

e−2λαn(t−tj) − e−2λαnt

2λαn
e−2λαn(tj−t)(e−λ

α
n(t−tj) − 1)2 dt

= E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1− e−2λαntj

2λαn

(
e−λ

α
n(t−tj) − 1

)2

dt.



60

Applying (5.2.9) and noting that 1− e−2λαntj ≤ 1 and 1− e−λαnk ≤ 1, we get

I1 ≤ E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1

2λαn
(1− e−λαnk)2 dt

≤ E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

1

2λαn
(1− e−λαnk)2 dt ≤ Ck1− 1

2α . (5.2.23)

Moreover, for I2 by (5.2.9) and noting that (en, em) = δnm, n,m = 1, 2, · · · , we have

I2 = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dx dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

∫ t

tj

∫ 1

0

Gα(t− s, x, y)2 dy ds dx dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

∫ t

tj

∫ 1

0

[ ∞∑
n=1

e−λ
α
n(t−s)en(x)en(y)

]2

) dy ds dx dt

=
N−1∑
j=0

∫ tj+1

tj

∫ t

tj

∞∑
n=1

e−2λαn(t−s) ds dt = E
N−1∑
j=1

∫ tj+1

tj

∞∑
n=1

(1− e−2λαn(t− tj)
2λαn

dt

= E
N−1∑
j=0

∫ tj+1

tj

∞∑
n=1

(1− e−2λαn(k))

2λαn
dt ≤

∞∑
n=1

(1− e−2λαnk)

2λαn
dt ≤ Ck1− 1

2α .

Finally, we consider III. We have

III = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2

dx dt

= E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)

−
∫ tj

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y) +

∫ t

tj

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2

dx dt

≤ 2E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)−Gα(t− s, x, y)dŴ (s, y)
]2

dx dt

+ 2E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dŴs, y)
]2

dx dt

= 2III1 + 2III2.

For III1, using the isometry property and the estimates for I1, we get
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III1 = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)

−
∫ tj

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2

dxdt

=
N−1∑
j=1

∫ tj+1

tj

∫ 1

0

∫ tj

0

∫ 1

0

[
Gα(tj − s, x, y)−Gα(t− s, x, y)

]2

dydsdxdt

≤ Ck1− 1
2α .

Further, for III2, again by the isometry property and the estimates for I2, we have

III2 = E
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2

dx dt

=
N−1∑
j=0

∫ tj+1

tj

∫ 1

0

∫ t

tj

∫ 1

0

(Gα(t− s, x, y))2 ds dy dx dt

≤ Ck1− 1
2α .

Together these estimate complete the proof of Theorem 5.2.2.

Theorem 5.2.6. Let 1
2
< α ≤ 1. Let û be the solution of (5.2.4)-(5.2.6). Then we have

E
∫ tj+1

tj

∫ 1

0

û2
t (t, x)dxdt ≤ C(k−

1
2α + h−1), (5.2.24)

and

E
∫ 1

0

∣∣∣(−∆)αû(t, x)
∣∣∣2dx ≤ C(k1− 1

2α + h−1k−1). (5.2.25)

Proof. We only prove (5.2.24), the proof of (5.2.25) is similar. Note that

û(t, x) =

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y) (5.2.26)

=

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ t

0

[ ∫ 1

0

Gα(t− s, x, y)
∂2Ŵ (s, y)

∂s∂y
dy
]
ds,

and

ût(t, x) =

∫ 1

0

∂

∂t
Gα(t, x, y)u0(y)dy +

∫ t

0

[ ∫ 1

0

∂

∂t
Gα(t− s, x, y)

∂2Ŵ (s, y)

∂s∂y
dy
]
ds

+

∫ 1

0

Gα(0, x, y)
∂2Ŵ (t, y)

∂s∂y
dy. (5.2.27)
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Since ω(t, x) =
∫ 1

0
Gα(t, x, y)ω0(y)dy is the solution of the following equation

∂ω(t, x)

∂t
+ (−∆)αω(t, x) = 0, 0 < x < 1, 0 < t < T,

ω(t, 0) = ω(t, 1) = 0, 0 < t < T,

ω(0, x) = ω0(x),

we therefore have

ω0(x) = ω(0, x) =

∫ 1

0

Gα(0, x, y)ω0(y)dy. (5.2.28)

Choose ω0(y) = ∂2Ŵ (t,y)
∂s∂y

for fixed t, we have

∫ 1

0

Gα(0, x, y)
∂2Ŵ (t, y)

∂t∂y
dy =

∂2Ŵ (t, x)

∂t∂x
.

Hence, by (5.2.27),

û(t, x) =

∫ 1

0

∂

∂t
Gα(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y) +

∂2Ŵ (t, x)

∂t∂x
.

Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), ∀a, b, c ∈ R, we have

E
∫ tj+1

tj

∫ 1

0

û2
t (t, x)dxdt

≤ 3E
∫ tj+1

tj

∫ 1

0

[ ∫ t

0

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

+ 3E
∫ tj+1

tj

∫ 1

0

[∂2Ŵ (t, x)

∂t∂x

]2

dxdt+ 3E
∫ tj+1

tj

∫ 1

0

[ ∫ 1

0

∂

∂t
Gα(t, x, y)u0(y)dy

]2

dxdt

= 3(I + II + III).

Using the inequality (a+ b)2 ≤ 2(a2 + b2),∀a, b,∈ R, we have

I ≤ 2E
∫ tj+1

tj

∫ 1

0

[ ∫ tj−1

0

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

+ 2E
∫ tj+1

tj

∫ 1

0

[ ∫ t

tj−1

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

= 2(I1 + I2).
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For I1, with ηkl = N (0, 1), k = 0, 1, 2, . . . , j − 1, l = 0, 1, 2, . . . , j − 2, j ≥ 2, we have

I1 = E
∫ tj+1

tj

∫ 1

0

[ ∫ tj−1

0

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

= E
∫ tj+1

tj

∫ 1

0

1

kh

[ j−2∑
l=0

∫ tl+1

tl

M−1∑
k=0

∫ xk+1

xk

∂

∂t
Gα(t− s, x, y)ηkldyds

]2

dxdt

= E
∫ tj+1

tj

∫ 1

0

1

kh

[ j−2∑
l=0

M−1∑
k=0

(∫ tl+1

tl

∫ xk+1

xk

∂

∂t
Gα(t− s, x, y)dyds

)
ηkl

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

j−2∑
l=0

M−1∑
k=0

(∫ tl+1

tl

∫ xk+1

xk

∂

∂t
Gα(t− s, x, y)dyds

)2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

[ j−2∑
l=0

M−1∑
k=0

(∫ tl+1

tl

∫ xk+1

xk

∞∑
n=1

λαne
−λαn(t−s)en(x)en(y)dyds

)2

dxdt

= C

∫ tj+1

tj

∫ 1

0

1

kh

[ j−2∑
l=0

M−1∑
k=0

( ∞∑
n=1

λαn
cosnπxk+1 − cosnπxk

nπ

en(x)
e−λ

α
n(t−tl+1) − e−λαn(t−tl)

λαn

)2

dxdt.

Note that (en, em) = δnm, n,m = 1.2. . . . , we have

I1 = C

∫ tj+1

tj

1

kh

[ J−2∑
l=0

M−1∑
k=0

∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2(e−λαn(t−tl+1) − e−λαn(t−tl)

1

)2

dt

= C

∫ tj+1

tj

1

kh

[ J−2∑
l=0

M−1∑
k=0

∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2

e−2λαn(t−tl+1)
(

1− e−λαn(tl+1−tl)
)2

dt

= C
1

kh

J−2∑
l=0

M−1∑
k=0

∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2

e−λ
α
n(tj−tl+1) − e−λαn(tj+1−tl+1)

λαn

(
1− e−λαn(tl+1−tl)

)2

= C
1

kh

[M−1∑
k=0

∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2 (1− e−λαnk)2

λαn

j−2∑
l=0

e−2λαn(tj−tl+1)

= C
1

kh

∞∑
n=1

(1− e−λαnk)2

λα+1
n

( J−1∑
k=0

cosnπxk+1 − cosnπxk

)2
J−2∑
l=0

e−2λαn(tj−tl+1)

Since |cos(nπxk+1)− cos(nπxk)| ≤ (nπh)2, we have

J−1∑
k=0

(cosnπxk+1 − cosnπxk)
2 ≤ C

J−1∑
k=0

(nπh)2 = Cλnh.
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Hence we get, by (5.2.13) and (5.2.12),

I1 = C
1

kh

∞∑
n=1

(1− e−λαnk)2

λα+1
n

(λnh)

j−2∑
l=0

e−2λαn(tj−tl+1)

= C
1

kh

∞∑
n=1

(1− e−λαnk)2

λα+1
n

(λnh)(k−1λ−αn )

= Ck−2

∞∑
n=1

(1− e−λαnk)2

λ2α
n

≤ Ck−2k
4α−1

2α ≤ Ck−
1

2α .

We remark that I1 can also be estimated by using the following alternative way.

I1 = E
∫ tj+1

tj

∫ 1

0

[ ∫ tj−1

0

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

[ ∫ tj−1

0

∫ 1

0

( ∂
∂t
Gα(t− s, x, y)

)2

dyds
]2

dxdt

=

∫ tj+1

tj

∫ 1

0

∫ tj−1

0

∫ 1

0

( ∞∑
n=1

λαne
−λαn(t−s)en(x)en(y)

)2

dydsdxdt

=

∫ tj+1

tj

∫ tj−1

0

∞∑
n=1

λ2α
n e
−2λαn(t−s)dsdt

=

∫ tj+1

tj

∞∑
n=1

λ2α
n

e−λ
α
n(t−tj−1) − e−λ2α

n t

2λαn
dt.

Note that t ≥ tj, we then have, by using (5.2.8),

I1 ≤ C

∫ tj+1

tj

∞∑
n=1

λαne
−2λαnkdt = Ck

∞∑
n=1

λαn
e2λαnk

≤ Ck−
1

2α .

For I2, we have

I2 ≤ 2E
∫ tj+1

tj

∫ 1

0

[ ∫ tj

tj−1

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

+ 2E
∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

= 2I21 + 2I22.
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Here I21 can be estimated as follows:

I21 ≤ E
∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∫ tj

tj−1

∫ xk+1

xk

∂

∂t
Gα(t− s, x, y)ηkjdyds

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∫ tj

tj−1

∫ xk+1

xk

∂

∂t
Gα(t− s, x, y)dyds

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∫ tj

tj−1

∫ xk+1

xk

∞∑
n=1

λαne
−λαn(t−s)en(x)en(y)dyds

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∞∑
n=1

λαn
e−λ

α
n(t−tj) − e−λαn(t−tj−1)

λαn
en(x)

cosnπxk+1 − cosnπxk
nπ

]2

dxdt

=

∫ tj+1

tj

1

kh

M−1∑
k=0

[ ∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2

e−2λ
α(t−tj)
n (1− e−λαnk)2

]
dt

=
1

kh

M−1∑
k=0

[ ∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2 e−2λαn(t−tj) − e−2λαn(tj+1−tj)

λαn
(1− e−λαnk)2

]
=

1

kh

∞∑
n=1

(1− e−λαnk)2

λα+1
n

(M−1∑
k=0

cosnπxk+1 − cosnπxk)
2
)
· 1

≤ 1

kh

∞∑
n=1

(1− e−λαnk)2

λα+1
n

λnh =
1

k

∞∑
n=1

(1− e−λαnk)2

λαn
≤ 1

k

∞∑
n=1

(1− e−λαnk)
λαn

,

which implies, by (5.2.9),

I21 ≤
1

k
k1− 1

2α = k−
1

2α .

For I22, we have

I22 = E
∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

∂

∂t
Gα(t− s, x, y)dŴ (s, y)

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∫ t

tj

∫ xk+1

xk

∞∑
n=1

λαne
−λαn(t−s)en(x)en(y)dyds

]2

dxdt

=

∫ tj+1

tj

∫ 1

0

1

kh

M−1∑
k=0

[ ∞∑
n=1

λαn
e−λ

α
n(t−tj) − e−λαn(t−tj)

λαn
en(x)

cosnπxk+1 − cosnπxk
nπ

dyds
]2

dxdt

=

∫ tj+1

tj

1

kh

M−1∑
k=0

∞∑
n=1

(cosnπxk+1 − cosnπxk
nπ

)2

(1− e−λαnk)2
]
dt

= k
1

kh

M−1∑
k=0

∞∑
n=1

(
cosnπxk+1 − cosnπxk

)2 (1− e−λαnk)2

λn
.

Moreover, applying (5.2.11) and taking into account | cos(nπxk+1) − cos(nπxk)| ≤ nπh,
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we derive

I22 ≤
1

h

(M−1∑
k=0

n2π2h2
) ∞∑
n=1

(1− e−λαnk)2

λn

≤
∞∑
n=1

(1− e−λαnk)2 ≤ Ck−
1

2α .

For II we have, with ηkj = N (0, 1),

II = E
∫ tj+1

tj

∫ 1

0

(∂Ŵ (t, x)

∂t∂x

)2

dxdt = E
∫ tj+1

tj

M−1∑
k=0

∫ xk+1

xk

1

kh
η2
kjdxdt

=
1

kh

∫ tj+1

tj

M−1∑
k=0

∫ xk+1

xk

dxdt =
1

kh
k = h−1.

Similarly, we can estimate III.

Together these estimates complete the proof of Theorem 5.2.6.

5.3 Fourier Spectral Method

We will consider a Fourier spectral method for solving the deterministic space fractional

partial differential equation:

∂û(t, x)

∂t
+ (−∆)αû(t, x) = f̂(t, x), 0 < t < T, 0 < x < 1, (5.3.1)

û(t, 0) = û(t, 1) = 0, 0 < t < T, (5.3.2)

û(0, x) = u0(x), 0 < x < 1. (5.3.3)

Here f̂(t, x) = ∂2Ŵ (t,x)
∂t∂x

is defined by (5.1.8), and f̂ ∈ L2((0, T )× (0, 1)).

Denote A = −∆ with D(A) = H1
0 (0, 1) ∩H2(0, 1). For any s > 0 and v ∈ H2s

0 (0, 1),

we have Asv =
∑∞

j=1 λ
s
j(v, ej)ej. It is obvious that

|v|r = ‖A
r
2v‖ =

( ∞∑
j=1

λrj(v, ej)
2
) 1

2
, ∀v ∈ Hr

0(0, 1), r > 0.

Further, we denote Eα(t) = e−tA
α
, 1

2
< α ≤ 1. Then the solution of (5.3.1)-(5.3.3) can be

written as the following operator form:

û(t) = Eα(t)û0 +

∫ t

0

Eα(t− s)f̂(s)ds, û(0) = u0. (5.3.4)
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The spectral method of (5.3.1)-(5.3.3) consists of finding ûJ(t) ∈ SJ such that

∂ûJ(t, x)

∂t
+ PJ(−∆)αûJ(t, x) = PJ f̂(t, x), 0 < t < T, 0 < x < 1, (5.3.5)

ûJ(t, 0) = ûJ(t, 1) = 0, 0 < t < T, (5.3.6)

ûJ(0, x) = PJu0(x), 0 < x < 1, (5.3.7)

where PJ : H 7→ SJ is defined by (5.1.15).

Similarly, the solution of (5.3.5)-(5.3.7) has the form of, with Eα,J(t) = e−tPJA
α
,

ûJ(t) = Eα,J(t)PJu0 +

∫ t

0

Eα,J(t− s)PJ f̂(s)ds, ûJ(0) = PJu0.

Note that Eα(t)vJ = Eα,J(t)vJ for any vJ ∈ SJ . We may have

ûJ(t) = Eα(t)PJu0 +

∫ t

0

Eα(t− s)PJ f̂(s)ds, ûJ(0) = PJu0. (5.3.8)

Theorem 5.3.1. Assume that û and ûJ are the solutions of (5.3.4) and (5.3.8), respec-

tively. Let 0 ≤ r < 1
2
, and assume that u0 ∈ Hr

0(0, 1). Then, there exists a positive

constant C such that

‖û(t)− ûJ(t)‖r ≤ C‖u0 − PJu0‖r + C
1

(J + 1)α(1− r
α

)

(∫ t

0

‖f̂(s)‖2ds
) 1

2
. (5.3.9)

In particular, we have, with r = 0,

‖û(t)− ûJ(t)‖ ≤ C‖u0 − PJu0‖+ C
1

(J + 1)α

(∫ t

0

‖f̂(s)‖2ds
) 1

2
. (5.3.10)

To prove Theorem 5.4.1, we need the following smoothing property for the solution oper-

ator Eα(t).

Lemma 5.3.2. (1). Let s > 0. We have

‖AsEα(t)‖ ≤ Ct−
s
α e−δt, t > 0, with

1

2
< α ≤ 1, (5.3.11)

for some constant C and δ which depend on s and α.

(2). Let PJ : H 7→ SJ be defined by (5.1.15) then we have

‖Eα(t)(I − PJ)‖ ≤ e−tλ
α
J+1‖v‖, t > 0, with

1

2
< α ≤ 1. (5.3.12)
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Proof. Note thatA is a positive definite operator with eigenvalues 0 < λ1 < λ2 < λ3 < · · · .

For any function g(·), we have

‖g(A)‖ = sup
λ>0
|g(λ)|.

Hence, with δ = 1
2
λα1 ,

‖AsEα(t)‖ = ‖AsEα(
t

2
)Eα(

t

2
)‖ ≤ ‖AsEα(

t

2
)‖‖Eα(

t

2
)‖

= sup
λ>λ1

(λse−
t
2
λα). sup

λ>λ1

(e−
t
2
λα) = sup

λ>λ1

(( t
2
λα)

s
α

e
t
2
λα

(
t

2
)
− s
α
)
e−

t
2
λα1

≤ C(
t

2
)
− s
α

e−δt ≤ Ct−
s
α e−δt,

which is (5.3.11). To show (5.3.12), we note that

‖Eα(t)(I − PJ)v‖ =
( ∞∑
j=J+1

e−2tλαj (v, ej)
2
) 1

2 ≤ e−tλ
α
N+1‖v‖.

The proof of Lemma 5.3.2 is complete.

Proof of Theorem 5.3.1. Subtracting (5.3.8) from (5.3.4), we get

|û(t)− ûJ(t)| = Eα(t)(u0 − PJu0) +

∫ t

0

Eα(t− s)(f(s)− PJf(s)ds = I + II.

(5.3.13)

For I, we have, with 0 ≤ r < 1
2
,

|I|2r = |Eα(t)(u0 − PJu0)|2r = ‖A
r
2Eα(t)(u0 − PJu0)‖2

=
( ∞∑
j=J+1

e−2tλαj λrj(u0, ej)
2
)
≤ e−tλ

α
j+1 |u0 − PJu0|r.

For II, by virtue of Lemma 5.3.2, for some γ ∈ (0, 1), we get

|II|r = |
∫ t

0

Eα(t− s)(f̂(s)− PJ f̂(s))ds|r = ‖
∫ t

0

A
r
2Eα(t− s)(I − PJ)f̂(s)ds‖

= ‖
∫ t

0

A
r
2Eα(1− γ)(t− s)E(γ(t− s))(I − PJ)f̂(s)ds‖

≤ C

∫ t

0

(t− s)−
r

2α
e−kα(t−s)‖f̂(s)ds‖,

where kα = δ(1− γ) + λαλ+1γ.
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By the Cauchy-Schwarz inequality, we have

|II|r ≤
(∫ ∞

0

((t− s)−
r

2α
e−kα(t−s))2

ds
) 1

2
(∫ t

0

‖(f̂(s)‖2ds
) 1

2
.

Note that r < α and λJ+1 = (J + 1)2π imply∫ ∞
0

e−2kαs

s
r
α

ds ≤
∫∞

0
s−

r
α e−2sds

k
1− r

α
α

≤ C
1

k
1− r

α
α

≤ C
1

(λαJ+1)1− r
α

≤ C
1

(J + 1)2α(1− r
α

)
.

Thus we get

|II|r ≤ C
1

(J + 1)2α(1− r
α

)

(∫ t

0

||f̂(s)||2ds
) 1

2
.

Together these estimates complete the proof of Theorem 5.3.1.

Combining Theorem 5.2.2 with Theorem 5.1.11, we obtain the following Theorem.

Theorem 5.3.3. Let u and ûJ be the solutions of (5.2.1)-(5.2.3) and (5.3.5)-(5.3.7),

respectively. Assume that u0 ∈ H. Then we have

E
∫ T

0

∫ 1

0

(u(t, x)− ûJ(t, x))2dxdt ≤ C(k1− 1
2α + h2k

2α−3
2α ) + C||u0 − PJu0||2

+ C
1

(J + 1)2α
(k−1− 1

2α + h−1k−1), for
1

2
< α ≤ 1.

Proof. Note that

E
∫ T

0

∫ 1

0

(u(t, x)− ûJ(t, x))2dxdt

≤ 2E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt+ 2E
∫ T

0

∫ 1

0

(û(t, x)− ûJ(t, x))2dxdt

= 2I + 2II.

For I, by Theorem 5.2.2, we have

I ≤ C(k1− 1
2α + h2k

2α−3
2α ).

For II, we have

II = E
∫ T

0

‖û(t)− ûJ(t))‖2dt ≤ C||u0 − PJu0||2 + C
1

(J + 1)2α
E
∫ T

0

∫ t

0

‖f̂(s)‖2dsdt.

Note that f̂(s) = ûs(s)− (−∆)αû(s), and hence, by virtue of Theorem 5.2.6, we have
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E
∫ T

0

∫ t

0

‖f̂(s)‖2 dsdt ≤ E
∫ T

0

∫ 1

0

‖ûs(s)− (−∆)αû(s)‖2 dsdt

≤ CE
∫ T

0

∫ T

0

∫ 1

0

(û2
s(s, x) + |(−∆)αû(s, x)|2 dxdsdt

≤ C
N∑
j=0

(k−
1

2α + h−1) ≤ C(k−1− 1
2α + h−1k−1).

Together these estimates complete the proof of Theorem 5.3.3.

Remark 2. In Theorem 5.3.3, the convergence error bounds depend on the step sizes k, h

and the dimension J of the spectral approximate space SJ . In general J is independent

of h. So we may choose sufficiently small J and get some convergence rates in Theorem

5.3.3.

5.4 Numerical Simulations

In this section, we will present the computational issues for solving the following stochas-

tic space fractional parabolic partial differential equation by using the spectral method

developed in the previous section, with 1
2
< α ≤ 1,

∂u(t, x)

∂t
+ ε(−∆)αu(t, x) = f(u(t, x)) +

∂2W (t, x)

∂t∂x
, 0 < x < 1, 0 < t ≤ T, (5.4.1)

u(t, 0) = u(t, 1) = 0, 0 < t ≤ T, (5.4.2)

u(0, x) = u0(x), 0 < x < 1, (5.4.3)

where (−∆)α is the fractional Laplacian defined by using the eignvalues and eigenfunctions

of the Laplacian operator −∆ subject to the periodic boundary conditions. Here f : R→

R is a smooth function and ε > 0 denotes the diffusion efficient. In our numerical example,

we will use the discrete sine transform MATLAB functions dst and idst. We also include

the nonlinear term f , although the error estimates in the previous sections are only proven

for f = 0. In our future work, we will consider the error estimates for solving the nonlinear

stochastic space fractional partial differential equations with multiplicative noise by using

the spectral method.
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Let x0 < x1 < · · · < xJ = 1 be a space partition of [0, 1] and ∆x = h be the space

step size. Let 0 = t0 < t1 < · · · < tN = T be a time partition of [0, T ] and ∆t = k be

the time step size. The space-time noise ∂2W (t,x)
∂t∂x

is approximated by using the following

piecewise constant function ∂2Ŵ (t,x)
∂t∂x

where

∂2Ŵ (t, x)

∂t∂x
=

ηn,j√
∆t∆x

, tn−1 ≤ t ≤ tn, xj−1 ≤ x ≤ xj. (5.4.4)

For convenience, we will denote Ĝ(t, x) = ∂2Ŵ (t,x)
∂t∂x

below.

Equations (5.4.1)-(5.4.3) can be approximated by the following, with 1
2
< α ≤ 1,

∂û(t, x)

∂t
+ ε(−∆)αû(t, x) = f(û(t, x)) + Ĝ(t, x), 0 < x < 1, 0 < t ≤ T, (5.4.5)

û(t, 0) = û(t, 1) = 0, 0 < t ≤ T, (5.4.6)

û(0, x) = u0(x), 0 < x < 1. (5.4.7)

Denote A = − ∂2

∂x2 , with D(A) = H1
0 (0, 1) ∩H2(0, 1). Then operator A : D(A) → H has

the eigenvalues λj and eigenfunctions ej where,

λj = j2π2, ej =
√

2 sin(jπx), j ∈ Z+. (5.4.8)

That is

Aej = λjej, j ∈ Z+. (5.4.9)

Then the equations (5.4.5)-(5.4.7) can be written into the abstract form: find û(t) ∈

H1
0 (0, 1) ∩H2(0, 1), such that

dû(t)

dt
+ Aû(t) = f(û(t)) + Ĝ(t), 0 < t ≤ T, (5.4.10)

û(0) = u0.

Let SJ−1 := span{e1, e2, · · · , eJ−1}. The spectral method for solving (5.4.5)-(5.4.7) is to

find uJ−1(t) ∈ SJ−1, such that, with 0 < t ≤ T ,

dûJ−1(t)

dt
+ AJ−1ûJ−1(t) = PJ−1f(uJ−1(t)) + PJ−1Ĝ(t), (5.4.11)

ûJ−1(0) = PJ−1u0,
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where PJ−1 : H 7→ SJ−1 is the orthogonal projection operator defined by

PJ−1v =
J−1∑
j=1

v̄jej, v̄j = (v, ej),

where AJ−1 = PJ−1A : SJ−1 7→ SJ−1. We remark that we use SJ−1 (not SJ), since we will

apply the MATLAB functions ”dst” and ”idst” in our numerical algorithms below.

The semi-implicit Euler method for solving (5.4.5)-(5.4.7) is to find uJ−1,n ≈ uJ−1(tn),

such that:

ûJ−1,n+1 − ûJ−1,n

∆t
+ AJ−1ûJ−1,n+1 = PJ−1f(ûJ−1,n) + PJ−1Ĝ(tn), (5.4.12)

ûJ−1,0 = PJ−1u0.

Assume that

ûJ−1,n =
J−1∑
j=1

ūj,nej ∈ SJ−1. (5.4.13)

It is easy to see that Fourier coefficients ūj,n satisfy, with j = 1, 2 · · · , J − 1,

ūj,n+1 = (1 + ∆tλj)
−1
(
ūj,n + ∆tf̄j(ûJ−1,n) + ∆tĜj,n

)
, (5.4.14)

ūj,0 = (PJ−1u0, ej), (5.4.15)

where

PJ−1Ĝ(tn) =
J−1∑
j=1

Ḡj,nej ∈ SJ−1, PJ−1f(ûJ,n) =
J−1∑
j=1

f̄j(ûJ,n)ej.

Here ūJ,n, Ḡj,n, f̄j(ûJ,n) denote the Fourier coefficients of ûJ−1,n, Ĝ(tn) and f(ûJ−1,n), re-

spectively. We may use the following steps to describe how to solve (5.4.5)-(5.4.7) numer-

ically by using the spectral method.

Step1. Given initial value û0(x) and f , we get the approximation uJ−1,0(x) =

PJ−1u0 ≈ u0 and PJ−1f(uJ−1,0) ≈ f(u0(x)).

Step2. Find the Fourier coefficients ūj,0 and f̄j(uJ−1,0) by
ū1,0

ū2,0

...

ūJ−1,0

 = (
√

2)−1
(J

2

)−1

dst


u0(x1)

u0(x2)
...

u0(xJ−1)

 ,
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and 
f̄1(uJ−1,0)

f̄2(uJ−1,0)
...

f̄J−1(uJ−1,0)

 = (
√

2)−1
(J

2

)−1

dst


f(u0(x1))

f(u0(x2))
...

f(u0(xJ−1))

 ,

and 
Ḡ1,0

Ḡ2,0

...

ḠJ−1,0

 = (
√

2)−1
(J

2

)−1

dst


Ḡ(t0, x1)

Ḡ(t0, x2)
...

Ḡ(t0, xJ−1)

 .

Here,
Ḡ(t0, x1)

Ḡ(t0, x2)
...

Ḡ(t0, xJ−1)

 = Ŵ (1, :),

where Ŵ is generated by

Ŵ =
1√

∆t∆x
∗ randn(N, J − 1). (5.4.16)

Step3. Find the Fourier coefficients ūj,1, j = 1, 2 · · · J − 1 by
ū1,1

ū2,1

...

ūJ−1,1

 = GG./EE

where ./ denotes the element-wise division and

GG = (
√

2)−1
(J

2

)−1

dst


u0(x1)

u0(x2)
...

u0(xJ−1)

+ ∆t(
√

2)−1
(J

2

)−1

dst


f(u0(x1))

f(u0(x2))
...

f(u0(xJ−1))





74

+∆t(
√

2)−1
(J

2

)−1

dst


Ḡ(t0x1)

Ḡ(t0x2)
...

Ḡ(t0xJ−1)

 ,

and, with λj = πj,

EE =


1 + ∆t ∗ λ2

1

1 + ∆t ∗ λ2
2

...

1 + ∆t ∗ λ2
J−1

 .

Step4. Find the Fourier coefficients ūj,2, j = 1, 2, · · · , J − 1 by

ûj,2 = (1 + ∆tλj)
−1(ūj,1 + ∆tf̄j(ûJ−1,1) + ∆tḠj,1).

Here 
f̄1(uJ−1,1)

f̄2(uJ−1,1)
...

f̄J−1(uJ−1,1)

 = (
√

2)−1
(J

2

)−1

dst


f(ûJ−1,1(x1))

f(ûJ−1,1(x2))
...

f(ûJ−1,1(xJ−1))

 ,

and 
Ḡ1,1

Ḡ2,1

...

ḠJ−1,1

 = (
√

2)−1
(J

2

)−1

dst


Ḡ(t1, x1)

Ḡ(t1, x2)
...

Ḡ(t1, xJ−1)

 ,

where
Ḡ(t1, x1)

Ḡ(t1, x2)
...

Ḡ(t1, xJ−1)

 = Ŵ (2, :),

and Ŵ is defined by (5.4.16).



75

Step5. Find ūj,2(xk), k = 1, 2, · · · , J − 1 by
ûJ−1,2(x1)

ûJ−1,2(x2)
...

ûJ−1,2(xJ−1)

 = (
√

2)−1
(J

2

)
.dst


ū1,2

ū2,2

...

ūJ−1,2

 .

Step6. Repeating Step 3-5, we obtain all ûJ−1,n(xk), k = 1, 2, · · · , J − 1.

Let us now introduce the MATLAB codes to solve our problem. Let u0 denote the ini-

tial value vector, that is u0 = [u(x1, ), u0(x2) · · · , u0(xJ−1)]. Let u denote the approximate

solution vector at time T , that is u = [u(x1, T ), u(x2, T ) . . . , u(xJ−1, T )]. We may use the

following MATLAB function to get the approximate solution u at T for any function f.

Here we choose f(u) = u− u3.

Let x = [x1, x2 · · · , xJ−1], epsilon = 1, kappa = 1. We can obtain the approximate

solution u at time T at the different xk, k = 1, 2, · · · , J − 1, by the following MATLAB

function.

function [u]=spde_oned_Gal(u0,x,T,N,kappa,W1,J, epsilon)

dt=T/N; Dt=kappa*dt; % kappa for the different time steps

N/Dt;

lambda=pi*[1:(J-1)]’; M= epsilon*lambda. ^2; EE=1./(1+Dt*M);

for n=1;N

u0_hat=(sqrt(2)*J/2)^(-1)*dst(u0);

f_u0=u0-u0.^3;%f(u)=u-u^3

f_u0_hat=(sqrt(2)*J/2)^(-1)*dst(f_u0);

W=W1(kappa*(n-1)+1,:); W=W’; % kappa for the different time steps

G_hat=(sqrt(2)*J/2)^(-1)*dst(W);

u1_hat=(u0_hat + Dt*f_u0_hat + Dt*G_hat).*EE;

u1=(sqrt(2)*J/2)*idst(u1_hat);

u0=u1;

end

u=u1;
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where W1 denotes the Brownian sheet generated by:

W1 =
1√

∆t ∗∆x
∗ randn(N, J − 1).

Example 1. Consider, with 0 < x < 1, 0 < t ≤ T , [2], [28],

∂u(t, x)

∂t
+ ε(−∆)αu(t, x) = f(u(t, x)) + h(t, x) +

∂2W (t, x)

∂t∂x
, (5.4.17)

u(t, 0) = u(t, 1) = 0, (5.4.18)

u(0, x) = u0(x), (5.4.19)

where ε = 1, f(u) = −bu, b = 0.5 and u0(x) = 10x2(1− x)2 and

h(t, x) = 10(1 + b)x2(1− x)2et − 10(2− 12x+ 12x2)et.

Allen, Novosel and Zhang [2] and Du and Zhang provided [28] the numerical approxima-

tion of E(u(t, x)) and E(u(t, x))2 with α = 1 at time t = 1 and x = 0.5 by using the finite

element method and the finite difference method. In Table 5.4.1 we obtain similar approx-

imation values as in their papers for different pair (∆t,∆x) by using spectral method. In

our experience, for each pair (∆t,∆x), 1000 runs are performed. In Table 5.4.1 u(1, 0.5)

denotes the approximation of u(t, x) at t = 1 and x = 0.5. The computational results

converge as ∆t and ∆x approach zero.

In Figure 5.4.1, we plot a piecewise constant approximation of the noise Ĝ(t, x) with

J = 24 and N = 26 on 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1.

In Figure 5.4.2, we plot an approximation sample path of u(t, x) with J = 24 and

N = 26 on 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1.

In Figure 5.4.3, we consider the convergence rate against the different time steps.

Choose the fixed J = 64; we than consider the different time steps. The reference

solution is obtained by using the time step ∆tref = T/Nref with Nref = 104. Let

kappa = [20, 50, 100, 150, 200, 250, 300]; we will consider the approximate solutions with

the different time steps ∆ti = ∆tref ∗ kappa(i), i = 1, 2, . . . , 7.

In our experiment, for saving the computation time, we will consider the error esti-

mates ‖ûN(tn)−u(tn)‖L2(Ω,H) at time tn. We hope to observe the same convergence order

as in Theorem 5.3.3.
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N = 26, T = 1.

-0.5
1

0

0.5

1

u(
t,x

) 1

0.8

An approximate sample path of u(t, x) at T=1  with J=2 4, N=26

t

1.5

0.5 0.6

x

2

0.4
0.2

0 0

Figure 5.4.2: An approximation sample path of u(t, x) with J = 24 and N = 26 , T = 1.

-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5

log2(  t)

-5

0

5

10

lo
g2

(e
rr

or
)

A plot of the error at T=1 against log2 (  t)

  reference line of slope 1/2

Figure 5.4.3: A plot of the error at T = 1 against log 2(∆t).



78

-100
3

-50

1

0

\h
at

{G
}

2 0.8

Piecewise constant approximation for the noise \hat{G}(t, x) with J=2^4, N=2^6

50

t

0.6

x

100

1 0.4
0.2

0 0

Figure 5.4.4: Piecewise constant approximation of the noise Ĝ(t, x) with J = 24 and
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∆x ∆t Eu(1, 0.5) E(u(1, 0.5))2

1/4 1/4 1.6108 2.6386

1/4 1/8 1.7003 2.9883

1/4 1/16 1.9051 3.6534

1/4 1/32 1.9051 3.6534

1/8 1/4 1.4838 2.5923

1/8 1/8 1.6574 2.7709

1/8 1/16 1.7323 2.7585

1/8 1/32 1.6676 2.8153

1/16 1/4 1.4681 2.3333

1/16 1/8 1.6097 2.6420

1/16 1/16 1.6110 2.5681

1/16 1/32 1.6133 2.8737

1/32 1/4 1.3605 2.4143

1/32 1/8 1.6099 2.6095

1/32 1/16 1.6839 2.7930

1/32 1/32 1.7061 2.8747

Table 5.4.1: The approximation of Eu(1, 0.5) and E(u(1, 0.5))2

To do this, we considerM = 100 simulations. For each simulation ωm,m = 1, 2, · · · ,M ,

we compute ûN(tn) ∼ û(tn) at time tn = 1 by using the different time steps. We then com-

pute the following L2 norm of the error at tn = 1 for the simulations ωm,m = 1, 2, . . . ,M ,

ε(∆ti, ωm) = ε((∆ti, ωm, tn) = ‖ûN(tn, ωm)− uref(tn, ωm)‖2,

where the reference (or ”true”) solution uref (tn, ωm) is approximated by the step ∆tref =

T/Nref . We then average ε(∆ti, ωm) with respect to ωm to obtain the following approx-

imation of ‖ûN(tn, ωm)− uref(tn)‖L2(Ω,Hr) with respect to the different time step ∆ti,

S(∆ti) =
( 1

M

M∑
m=1

ε(∆ti, ωm)
) 1

2
=
( 1

M

M∑
m=1

‖û(tn, ωm)− uref(tn, ωm)‖2
) 1

2
.

Since the convergence rate with respect to the time step is O(∆t
1
2 ) which implies that

log(S(∆ti)) ≈ 1
2
log(∆ti), i = 1, 2, . . . , 7.
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In Figure 5.4.3, we plot the points log(S(∆ti)) ≈ 1
2
log(∆ti), i = 1, 2, . . . , 7 and we see

that the points are parallel to the reference line, which has the slope 1
2
, as we expected in

our theoretical results.

In Table 5.4.2, we list the error S(∆ti) against the different time steps ∆ti.

∆ti 2e− 03 5e− 03 1e− 02 1.5e− 02 2e− 02 2.5e− 02 3e− 02

L2-error 0.2775 0.5355 0.7116 0.9249 1.0306 1.1159 1.1742

Table 5.4.2: The L2 norm error at T = 1 against ∆t

.

In this chapter, we present a Fourier spectral method for solving space fractional partial

differential equations. The space-time white noise is approximated by using piecewise

constant functions. For the liner problem, we obtain the exact error estimates in the

L2-norm and find the relations between the convergence order and the fractional power

α, 1
2
< α ≤ 1. For the nonlinear problem, we introduce the numerical algorithm and the

MATLAB code for solving such problem based on the discrete sine transform and inverse

discrete sine transform MATLAB functions dst.m and idst.m. The MATLAB code in

this paper can be easily modified to solve other nonlinear stochastic fractional partial

differential equations with Dirichlet boundary conditions.



Chapter 6

Fourier Spectral Methods for

Stochastic Space Fractional Partial

Differential Equations Driven by

Special Additive Noises

6.1 Introduction

Fourier spectral methods for solving stochastic space fractional partial differential equa-

tion driven by special additive noises in one dimensional case are introduced and analyzed

in this chapter. The space fractional derivative is defined by using the eigenvalues and

eigenfunctions of Laplacian subject to some boundary conditions. The space-time noise

is approximated by the piecewise constant functions in the time direction and by some

appropriate approximations in the space direction. The approximated stochastic space

fractional partial differential equations is then solved by using Fourier spectral methods.

For the linear problem, we obtain the precise error estimates in the L2 norm and find

the relation between the error bounds and the fractional powers. For the nonilinear

problem, we introduce the numerical algorithms and MATLAB codes based on the FFT

transforms. Our numerical algorithms can be adapted easily to solve other stochastic space

fractional partial differential equations with multiplicative noises. Numerical examples for

82
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the semilinear stochastic space fractional partial differential equations are given.

Fourier spectral methods for solving the following stochastic space fractional partial

differential equation are considered in this work, with 1
2
< α ≤ 1,

du(t)

dt
+ Aαu(t) = f(u(t)) +

dW (t)

dt
, 0 < t < T, (6.1.1)

u(0) = u0. (6.1.2)

Here A is an unbounded positive self-adjoint operator, u0 is an initial value and f(u) is a

nonlinear term. The space-time white noise W (t) will be defined below.

Let H be a separable Hilbert space and || · ||, (·, ·) denote the norm and inner product

in H, respectively. Let A : D(A) ⊂ H → H be a positive selfjoint operator such that A−1

is compact on H. Assume that A has the eigenpair {λk, ek}, k = 1, 2, · · · .

Using the basis {ek} we may also define the fractional powers of A. Given 1
2
< α ≤ 1,

we define

H2α := D(Aα) = {v ∈ H :
∑
k

λ2α
k |(v, ek)|2 <∞},

and

Aαv :=
∑
k

λαk (v, ek)ek, v ∈ D(Aα), (6.1.3)

with the associated norm defined by

||Aαv||2 =
∑
k

λ2α
k (v, ek)

2.

The special space-time noise considered in this work is

dW (t)

dt
=
∞∑
k=1

σk(t)β̇k(t)ek, (6.1.4)

where β̇k(t) = dβk(t)
dt

, k = 1, 2, · · · is the derivative of the standard Brownian motions

βk(t), k = 1, 2, · · · and σk(t), k = 1, 2, · · · are some appropriate functions of t. In particu-

lar, when σk(t) = γ̄
1
2
k , γ̄k > 0, the noise (6.1.4) reduces to

dW (t)

dt
=
∞∑
k=1

γ̄
1
2
k β̇k(t)ek,
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which is so called H-valued Wiener process with the covariance operator Q and the linear

operator Q : H → H is a trace class operator, that is Tr(Q) =
∑∞

k=1 γ̄k < ∞ where

Qek = γ̄kek, k = 1, 2 . . . .

Let us here give two possible operators in (6.1.1)-(6.1.2). One is A = −∆ with the

homogeneous Dirichlet boundary condition, D(A) = H1
0 (0, 1) ∩H2(0, 1), where ∆ = ∂2

∂x2

denotes the Laplacian. In this case, A has eigenvalues λk = k2π2 and eigenfunctions ek =
√

2 sin kπx, k = 1, 2, . . . Our error estimates in this work are based on these eigenvalues

and eigenfunctions. Another one is A = I−∆ with periodic boundary conditions, D(A) =

H2
per(−π, π). Here H2

per(−π, π) denotes the completion with respect to the H2(−π, π)

norm of the set of u ∈ C∞([−π, π]) such that the pth derivative u(p)(−π) = u(p)(π) for

p = 0, 1, 2, . . . . It is well known that H2
per(−π, π) is a Hilbert space with the H2(−π, π)

inner product, [62, Definition 1.47]. In this case, A has the eigenvalues λ1 = 1, λ2k =

1 + k2, λ2k+1 = 1 + k2 and eigenfunctions e1(x) = 1√
2π
, e2k(x) = 1√

π
sin kx, e2k+1(x) =

1√
π

cos kx, k = 1, 2 . . . , see, e.g., [62, Example 1.84].

We obtain the detailed error estimates, i.e., Theorems 6.2.1, 6.3.1, 6.3.2 below for

the linear stochastic space fractional partial differential equation subject to the Dirichlet

boundary conditions. More precisely, we shall consider the error estimates for the following

linear problem, with 1
2
< α ≤ 1,

∂u(t, x)

∂t
+ (−∆)αu(t, x) =

∂2W (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1, (6.1.5)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (6.1.6)

u(0, x) = u0(x), 0 < x < 1. (6.1.7)

Here the space-time noise ∂2W (t,x)
∂t∂x

= dW (t)
dt

is defined by (6.1.4).

For the linear stochastic space fractional partial differential equation subject to the

periodic boundary conditions, we may obtain the similar error estimates as in Theorems

6.2.1, 6.3.1, 6.3.2. The stochastic partial differential equations driven by the white noise

(the co-variance operator Q = I) often have poor regularity estimates. In the physical

world, to take into account short and long range correlations of the stochastic effects, both

white noise and colored noises may be considered. There are many situations where colour

noises model the reality more closely, and there are also instances where the important

stochastic effects are the noises acting on a few selected frequencies. For example one
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may choose σk(t) = cos t
k3 , see e.g., [28].

Space fractional partial differential equations are widely used to model complex phe-

nomena, for example, quasi-geostrophic flows, fast roating fluids, dynamic of the fron-

togenesis in meteorology, diffusion in fractal or disordered medium, pollution problems,

mathematical finance and transport problem, [9], [11], [16], [101].

Let Nt ∈ N and let 0 = t0 < t1 < t2 < · · · < tNt = T be the time partition of

[0, T ] and ∆t the time step size. To find the approximation solution of (6.1.5)-(6.1.7) we

approximate the noise ∂2W (t,x)
∂t∂x

by the piecewise constant functions in the time direction,

with l = 1, 2, · · ·Nt [28],

∂2Ŵ (t, x)

∂t∂x
=
∞∑
k=1

σMk (t)ek(x)
( Nt∑
l=1

1√
∆t
ηklχl(t)

)
, (6.1.8)

where

ηk,l =
1√
∆t

∫ tl

tl−1

dβk(t) =
1√
∆t

(
βk(tl)− βk(tl−1)

)
∈ N (0, 1), (6.1.9)

and

χl(t) =

 1, t ∈ [tl−1, tl], l = 1, 2, · · · , N,

0, otherwise.
(6.1.10)

Here σMk (t) is the approximation of σk(t) in the space direction. For example, we can

choose with some positive integer M > 0,

σk(t) =
cos t

k3
, σMk (t) =

 σk(t), k ≤M,

0, k > M.
(6.1.11)

More precisely, replacing σk(t) by σMk (t) we get the noise approximation in space, and

replacing β̇k(t) by
∑Nt

j=1
1√
∆t
ηk,jχl(t), we get the noise approximation in time.

Substituting ∂2W (t,x)
∂t∂x

with ∂2Ŵ (t,x)
∂t∂x

in (6.1.5)-(6.1.7), we get

∂û(t, x)

∂t
+ (−∆)αû(t, x) =

∂2Ŵ (t, x)

∂t∂x
, 0 < t < T, 0 < x < 1, (6.1.12)

û(t, 0) = û(t, 1) = 0, 0 < t < T, (6.1.13)

û(0, x) = u0(x), 0 < x < 1. (6.1.14)
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Note that ∂2Ŵ (t,x)
∂t∂x

now is a function in L2((0, T ) × (0, 1)) and therefore we can solve

(6.1.12)-(6.1.14) by using any numerical methods for deterministic space fractional partial

differential equations. Assume that {σk(t)} and its derivative are uniformly bounded, [28]

|σk(t)| ≤ βk, |σ′k(t)| ≤ γk, ∀t ∈ [0, T ], (6.1.15)

and the coefficients {σMk } are constructed such that

|σk(t)− σMk (t)| ≤ αMk , |σMk (t)| ≤ βMk , |(σMk )
′
(t)| ≤ γMk , ∀t ∈ [0, T ], (6.1.16)

with positive sequences {αMk } being arbitrarily chosen, {βMk } and {γMk } being related to

{βk} and {γk}. Further we assume that

βMk ≤ k−ᾱ, for some 0 ≤ ᾱ <
1

2
. (6.1.17)

Let E denote the expectation, in the Theorem 6.2.1, we prove that, with 1
2
< α ≤ 1 and

0 ≤ ᾱ < 1
2
,

E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt (6.1.18)

≤ C
( ∞∑
k=1

(αMk )2

2λαk
+ ∆t2

∞∑
k=1

(
λαkβ

M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
. (6.1.19)

Let J ∈ N, we denote

SJ = span{e1, e2, · · · eJ},

and define by PJ : H → SJ the projection from H to SJ ,

PJv =
J∑
j=1

(v, ej)ej. (6.1.20)

The Fourier spectral method of (6.1.12)-(6.1.14) is to find ûJ(t) ∈ SJ such that, with

ĝ(t, x) := ∂2Ŵ (t,x)
∂t∂x

,

∂ûJ(t, x)

∂t
+ (−∆)αûJ(t, x) = PJ ĝ(t, x), 0 < t < T, 0 < x < 1, (6.1.21)

ûJ(t, 0) = ûJ(t, 1) = 0, 0 < t < T, (6.1.22)

ûJ(0, x) = PJu0(x), 0 < x < 1. (6.1.23)
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In Theorem 6.3.1, we prove that, with 1
2
< α ≤ 1,

||û(t)− ûJ(t)||2 ≤ C||u0 − PJu0||2 + C
1

(J + 1)2α

∫ t

0

||ĝ(s)||2ds. (6.1.24)

Combining Theorem 6.2.1 with 6.3.1 we have, with u0 ∈ D(Aα), 1
2
< α ≤ 1, and 0 ≤ ᾱ <

1
2
,

E
∫ T

0

∫ t

0

(u(t, x)− ûJ(t, x))2dxdt

≤ C
( ∞∑
k=1

(αMk )2

2λαk
+ ∆t2

∞∑
k=1

(λαkβ
M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
+ CE||u0 − PJu0||2 + C

1

(J + 1)2α

(
∆tE||Aαu0||2 + ∆t

∞∑
k=1

(λαkβ
M
k )2 +

∞∑
k=1

(βMk )2
)
.

6.2 Approximate Noise and Regularity of the Solution

It is well known that the mild solution of (6.1.5)-(6.1.7) has the following form.

u(t, x) =

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y), (6.2.1)

where

Gα(t, x, y) =
∞∑
j=1

e−λ
α
j tej(x)ej(y),

and the stochastic integral
∫ t

0

∫ 1

0
Gα(t−s, x, y)dW (s, y) is well-defined. The existence and

uniqueness of the solutions of (6.1.12)-(6.1.14) are discussed in, e.g., [23], [24], [78] and

the references cited therein.

Similarly the mild solution of (6.1.12)-(6.1.14) has the form of, see, e.g., [28]

û(t, x) =

∫ 1

0

Gα(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y). (6.2.2)

Theorem 6.2.1. Let u and û be the solutions of (6.1.5)-(6.1.7) and (6.1.12)-(6.1.14)

respectively. Assume that the Assumptions (6.1.15)-(6.1.17) hold . Then we have, with

0 ≤ ᾱ < 1
2
,

E
∫ T

0

∫ t

0

(u(t, x)− û(t, x))2dxdt

≤ C
( ∞∑
k=1

(αMk )2

2λαk
+ ∆t2

∞∑
k=1

(
λαkβ

M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
. (6.2.3)
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To prove Theorem 6.2.1, we need the following Lemma.

Lemma 6.2.2. Let 1
2
< α ≤ 1 and 0 ≤ ᾱ < 1

2
. We have∫ ∞

0

x−2(ᾱ+α)(1− e−x2α∆t)dx ≤ C∆t1+ ᾱ
α
− 1

2α . (6.2.4)

Proof. With the variable change y = x2α∆t, we have∫ ∞
0

x−2(ᾱ+α)(1− e−x2α∆t)dx ≤ C∆t1+ ᾱ
α
− 1

2α

(∫ 1

0

+

∫ ∞
1

) 1− e−y

y2+ ᾱ
α
− 1

2α

dy.

It is easy to see that, with 1
2
< α ≤ 1 and 0 ≤ ᾱ < 1

2
,∫ ∞

1

1− e−y

y2+ ᾱ
α
− 1

2α

dy ≤ C.

Further, we have, with 1
2
< α ≤ 1, 0 ≤ ᾱ < 1

2
,∣∣∣ ∫ 1

0

1− e−y

y2+ ᾱ
α
− 1

2α

dy
∣∣∣ ≤ C

∫ 1

0

y

y2+ ᾱ
α
− 1

2α

dy ≤ C

∫ 1

0

1

y1+ ᾱ
α
− 1

2α

dy <∞.

Together these estimates complete the proof of Lemma 6.2.2.

Now we turn to the proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. Subtracting (6.2.2) from (6.2.1), we have

u(t, x)− û(t, x)

=

∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)

=
[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]

+
[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]

= F1(t, x) + F2(t, x),

where with ηk,l and χl(t) defined as in (6.1.9),

dW (s, y) =
∂2W (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σk(s)ek(y)
]
dβk(s)dy,

dW (s, y) =
∂2W (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σMk (s)ek(y)
]
dβk(s)dy,

dŴ (s, y) =
∂2Ŵ (s, y)

∂s∂y
dsdy =

[ ∞∑
k=1

σMk (s)
( Nt∑
l=1

ηk,l√
∆t
χl(s)

)
ek(y)

]
dsdy.
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Thus we have

E
∫ T

0

∫ 1

0

|u(t, x)− û(t, x)|2dxdt

≤ CE
∫ T

0

∫ 1

0

F 2
1 (t, x)dxdt+ CE

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt = C(I + II).

For I, we have, by using isometry property and (6.1.16),

I = E
∫ T

0

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dxdt

=

∫ T

0

∫ 1

0

∫ t

0

[ ∫ 1

0

Gα(t− s, x, y)
( ∞∑
k=1

(σk(s)− σMk (s))ek(y)
)
dy
]2

dsdxdt

=

∫ T

0

∫ 1

0

∞∑
k=1

e−2(t−s)λαk (σMk )2dsdt =

∫ T

0

∞∑
k=1

1− e−2tλαk

2λαk
(σMk )2dt

≤ C
∞∑
k=1

1

2λαk
(σMk )2.

For II, we have

II = E
∫ T

0

∫ 1

0

{[∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gα(t− s, x, y)dŴ (s, y)
]2}

dxdt

≤ 3E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

{[∫ t

0

∫ 1

0

[Gα(t− s, x, y)dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dW (s, y)−
∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)
]2

+
[ ∫ tj

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)−
∫ t

0

∫ 1

0

Gα(tj − s, x, y)dŴ (s, y)
]2}

dxdt

≤ 3(II1 + II2 + II3).
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For II2, we have, using the isometry property,

II2 = E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ j−1∑
l=0

∫ tl+1

tl

∫ 1

0

Gα(tj − s, x, y)
( ∞∑
k=1

σMk (s)ek(y)dy
)
dβk(s)

−
j−1∑
l=0

∫ tj+1

tj

∫ 1

0

Gα(tj − s̄, x, y)
∞∑
k=1

σMk (s̄)ek(y)dyds̄
( 1

∆t

∫ tj+1

tj

dβk(s)
)]2

dxdt

=
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

∫ tl+1

tl

{∫ 1

0

Gα(tj − s, x, y)
( ∞∑
k=1

σMk (s)ek(y)
)
dy

− 1

∆t

∫ tl+1

tl

∫ 1

0

Gα(tj − s̄, x, y)
( ∞∑
k=1

σMk (s̄)ek(y)dyds̄
}2

dsdxdt

=
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

j−1∑
l=0

∫ tl+1

tl

{ 1

∆t

∫ tl+1

tl

[ ∫ 1

0

Gα(tj − s, x, y)(
∞∑
k=1

σMk (s)ek(y)dy

−
∫ 1

0

Gα(tj − s̄, x, y)
( ∞∑
k=1

σMk (s̄)ek(y)dy]ds̄
}2

dsdxdt

=
Nt−1∑
j=0

∫ tj+1

tj

[

j−1∑
l=0

∫ tj+1

tj

∞∑
k=1

{ 1

∆t

∫ tl+1

tl

[e−λ
α
k (tj−s)σMk (s)− e−λαk (tj−s̄)σMk (s̄)]ds̄

}2

dsdt

=
Nt−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
k=1

e−2λαk tj

∆t2

{∫ tl+1

tl

[eλ
α
k (s)σMk (s)− eλαk (s̄)σMk (s̄)]ds̄

}2

dsdt.

By (6.1.16) we have, with ξ1
l , ξ

2
l lying between s and s̄,∣∣∣eλαk (s)σMk (s)− eλαk (s̄)σMk (s̄)
∣∣∣ =

∣∣∣(eλαk s − eλαk (s̄))σMk (s) + eλ
α
k (s̄)(σMk (s)− σMk (s̄)

∣∣∣
≤
∣∣∣(λαkeλαk ξ1

l ∆t)σMk (s) + eλ
α
k s̄(σMk )′(ξ2

l )∆t
∣∣∣

≤
∣∣∣(λαkeλαk tl+1βMk ∆t) + eλ

α
k tl+1(γMk )∆t

∣∣∣
≤ eλ

α
k tl+1(λαkβ

M
k + γMk )∆t.

Hence we have

II2 ≤
Nt−1∑
j=0

∫ tj+1

tj

j−1∑
l=0

∫ tl+1

tl

∞∑
k=1

e−2λαk tj

∆t2

[
eλ

α
k tl+1(λαkβ

M
k + γMk )∆t4

]
dsdt

≤ ∆t2
Nt−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
k=1

(
λαkβ

M
k + γMk

)2

dsdt ≤ C∆t2
∞∑
k=1

(
λαkβ

M
k + γMk

)2

,

where we use the inequality e−2λαk (tj−tl+1) ≤ 1 for l = 0, 1, 2, · · · , j − 1.
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For II1, we have

II1 = E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)−
∫ tj

0

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dxdt

≤ 2E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ tj

0

∫ 1

0

[Gα(t− s, x, y)−Gα(tj − s, x, y)dW (s, y)
]2

dxdt

+ 2E
Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dxdt = 2(II1
1 + II2

1 ).

For II1
1 , we have, by the isometry property and (6.1.16),

II1
1 =

Nt−1∑
j=0

∫ tj+1

tj

∫ tj

0

∞∑
k=1

(
e−λ

α
k (t−s) − e−λαk (tj−s)

)2

(σMk (s))2dsdt

≤
Nt−1∑
j=0

∫ tj+1

tj

∞∑
k=1

(βMk )2

∫ tj

0

(
e−λ

α
k (t−s) − e−λαk (tj−s)

)2

dsdt.

Note that∫ tj

0

(
e−λ

α
k (t−s) − e−λαk (tj−s)

)2

ds =

∫ tj

0

(e−2λαk (t−s)
(

1− e−λαk (tj−t)
)2

ds

=
(

1− e−λαk (tj−t)
)2 e−2λαk (t−tj) − e−2λαk t

2λαk
≤

(
1− eλαk (t−tj)

)2

2λαk
.

We have

II1
1 ≤

Nt−1∑
j=0

∫ tj+1

tj

( ∞∑
k=1

(βMk )2
)(1− e−λαk (t−tj))2

2λαk
dt ≤ C

∞∑
k=1

(βMk )2 (1− e−λαk∆t)2

2λαk
.

By (6.1.17) and Lemma 6.2.2, we obtain

II1
1 ≤ C

∞∑
k=1

k−2ᾱ (1− e−λαk∆t)2

2λαk
≤ C

∫ ∞
1

x−2(ᾱ+α)(1− e−x2α∆tdx ≤ C∆t1+ ᾱ
α
− 1

2α .

For II2
1 , we have, by isometry property and (6.1.16) and (6.1.17),

II2
1 = E

Nt−1∑
j=0

∫ tj+1

tj

∫ 1

0

[ ∫ t

tj

∫ 1

0

Gα(t− s, x, y)dW (s, y)
]2

dxdt

=
Nt−1∑
j=0

∫ tj+1

tj

∫ t

tj

∞∑
k=1

e−2λαk (t−s)(σMk (s))2dsdt ≤
Nt−1∑
j=0

∫ tj+1

tj

∫ t

tj

∞∑
k=1

(
k−2ᾱe−2λαk (t−s)

)
dsdt

≤ C

Nt−1∑
j=0

∫ tj+1

tj

∞∑
k=1

[
k−2ᾱ (1− e2λαk∆t

λαk

]
dt = C

∞∑
k=1

[
k−2ᾱ (1− e−λαk∆t)

λαk

]
≤ C

∫ ∞
0

1− e−2x2α∆t

x2α+2ᾱ
dx ≤ C

∫ ∞
0

x−2(ᾱ+α)(1− e−x2α∆t)dx.
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By Lemma 6.2.2, we obtain

II2
1 ≤ C∆t1+ ᾱ

α
− 1

2α . (6.2.5)

Similarly we may show, with 0 ≤ ᾱ < 1
2
,

II3 ≤ C∆t1+ ᾱ
α
− 1

2α . (6.2.6)

Together these estimates complete the proof of Theorem 6.2.1.

Theorem 6.2.3. Let û be the solution of (6.1.12)-(6.1.14). Assume that the Assumptions

(6.1.15)-(6.1.17) hold . Further assume that u0 ∈ D(Aα), 1
2
< α ≤ 1 and E||Aαu0||2 <∞.

Then we have

E
∫ tj+1

tj

∫ 1

0

∣∣∣∂û(t, x)

∂t

∣∣∣2dxdt ≤ C
(

∆tE||Aαu0||2 + ∆t
∞∑
k=1

λαk (βMk )2 +
∞∑
k=1

(βMk )2
)
,

(6.2.7)

and

E
∫ tj+1

tj

∫ 1

0

|Aαû(t, x)|2dxdt ≤ C
(

∆tE||Aαu0||2 + ∆t
∞∑
k=1

λαk (βMk )2
)
. (6.2.8)

Proof. Assume that, with 0 < t ≤ tj+1,

û(t, x) =
∞∑
k=1

ûk(t)ek(x), (6.2.9)

and with ûk(0) = (u0, ek), k = 1, 2, · · · ,

û(0, x) = u0(x) =
∞∑
k=1

ûk(0)ek(x).

Substituting (6.2.9) into (6.1.12) we get, with 0 < t ≤ tj+1,

dûk(t)

dt
+ λαk ûk(t) = σMk (t)

( j+1∑
l=1

1√
∆t
ηk,lχl(t)

)
, (6.2.10)

which implies that, with 0 < t ≤ tj+1,

ûk(t) = e−λ
α
k tûk(0) +

∫ t

0

e−λ
α
k (t−s)σMk (s)

( j+1∑
l=1

1√
∆t
ηk,lχl(s)

)
ds. (6.2.11)
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Let us first show (6.2.7). Note that {ek} is an orthonormal basis in H = L2(0, 1), we

have, by (6.2.10),

E
∫ tj+1

tj

∫ 1

0

∣∣∣∂û(t, x)

∂t

∣∣∣2dxdt = E
∞∑
k=1

∫ tj+1

tj

∣∣∣dûk(t)
dt

∣∣∣2dt
≤ 2E

∞∑
k=1

(∫ tj+1

tj

|λαk ûk(t)|2dt+

∫ tj+1

tj

∣∣∣σMk (t)√
∆t

j+1∑
l=1

ηk,lχl(t)
∣∣∣2dt)

= 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

|ûk(t)|2dt+ 2E
∞∑
k=1

∫ tj+1

tj

∣∣∣σMk (t)√
∆t

ηk,j+1χj+1(t)
∣∣∣2dt

= 2(I + II).

For I, we have, by (6.2.11), with t?l = tl, 1 ≤ l ≤ j and t?l = t, l = j + 1,

I ≤ 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

∣∣∣e−λαk tûk(0)
∣∣∣2dt

+ 2E
∞∑
k=1

λ2α
k

∫ tj+1

tj

∣∣∣ j+1∑
l=1

ηk,l√
∆t

∫ t?l

tl−1

e−λ
α
k (t−s)σMk (s)ds

∣∣∣2dt
= 2E

∞∑
k=1

∫ tj+1

tj

e−2λαk t(Aαu0, ek)
2dt

+ 2
∞∑
k=1

λ2α
k

∫ tj+1

tj

j+1∑
l=1

1

∆t

(∫ t?l

tl−1

e−λ
α
k (t−s)σMk (s)ds

)2

dt

≤ 2E
∞∑
k=1

(Aαu0, ek)
2∆t+ 2

∞∑
k=1

λ2α
k

∫ tj+1

tj

j+1∑
l=1

1

∆t

(∫ t?l

tl−1

e−2λαk (t−s)(σMk (s))2ds)
(∫ t?l

tl−1

12ds
)
dt

≤ 2E
∞∑
k=1

(Aαu0, ek)
2∆t+ 2

∞∑
k=1

λ2α
k

∫ tj+1

tj

(∫ t

0

e−2λαk (t−s)σMk (s))2ds
)
dt

≤ 2E
∞∑
k=1

(Aαu0, ek)
2∆t+ 2

∞∑
k=1

λ2α
k (βMk )2

∫ tj+1

tj

1− e−2λαk t

2λαk
dt

≤ 2E||Aαu0||2∆t+ ∆t
∞∑
k=1

λαk (βMk )2,

where in the last inequality, we use the inequality 1− e−2λαk t ≤ 1.

For II, we have

II = E
∞∑
k=1

∫ tj+1

tj

∣∣∣σMk (t)√
∆t

ηk,j+1χj+1(t)
∣∣∣2dt =

∞∑
k=1

∫ tj+1

tj

(σMk (t)√
∆t

)2

dt ≤
∞∑
k=1

(βMk )2.
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Combining I with II, we get (6.2.7).

Similarly we have

E
∫ tj+1

tj

∫ 1

0

|Aαû(t)|2dxdt = E
∫ tj+1

tj

||Aαû(t, x)||2dt

= E
∫ tj+1

tj

( ∞∑
k=1

λ2α
k û

2
k(t)
)
dt = E

∞∑
k=1

λ2α
k

∫ tj+1

tj

|ûk(t))|2 dt = I,

which implies (6.2.8) also holds.

Together these estimates complete the proof of the Theorem 6.2.3.

6.3 Fourier Spectral Method

Denote Eα(t) = e−tA
α
, 1

2
< α ≤ 1, where Aα is defined by (6.1.3). The mild solution of

(6.1.12)-(6.1.14) has the form of, with ĝ(t) = ∂2Ŵ (t,x)
∂t∂x

,

û(t) = Eα(t)û(0) +

∫ t

0

Eα(t− s)ĝ(s)ds, û(0) = u0. (6.3.1)

Similarly the solution of (6.1.21)-(6.1.23) has the form of

ûJ(t) = Eα(t)PJ û(0) +

∫ t

0

Eα(t− s)PJ ĝ(s)ds, û(0) = u0. (6.3.2)

Theorem 6.3.1. Assume that û and ûJ are the solutions of (6.1.12)-(6.1.14) and (6.1.21)-

(6.1.23), respectively. Let 0 ≤ r < 1
2

and let u0 ∈ H. Then we have, with 1
2
< α ≤ 1,

||A
r
2 (û(t)− ûJ(t))||2 ≤ C||A

r
2 (u0 − PJu0)||2 + C

1

(J + 1)2α(1− r
α )

∫ t

0

||ĝ(s)||2ds.

(6.3.3)

In particular, with r = 0,

||(û(t)− ûJ(t))||2 ≤ C||u0 − PJu0||2 + C
1

(J + 1)2α

∫ t

0

||ĝ(s)||2ds. (6.3.4)

Proof. Subtracting (6.3.2) from (6.3.1), we get

û(t)− ûJ(t) = Eα(t)(u0 − PJu0) +

∫ t

0

Eα(t− s)(ĝ(s)− PJ ĝ(s))ds = I + II.

(6.3.5)
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For I, we have, with 0 ≤ r < 1
2
,

||A
r
2 I|| = ||A

r
2Eα(t)(u0 − PJu0)||

=
( ∞∑
j=J+1

e−2tλαj λrj(u0, ej)
2
) 1

2 ≤ e−tλ
α
j+1||A

r
2 (u0 − PJu0)||.

For II we have, for some γ ∈ (0, 1),

||A
r
2 II|| = ||

∫ t

0

A
r
2Eα(t− s)(I − PJ)ĝ(s)ds||

= ||
∫ t

0

[
A

r
2Eα(1− γ)(t− s)

][
Eα(γ(t− s))(I − PJ)

]
ĝ(s)ds||

≤ C

∫ t

0

(t− s)
−r
2α e−kα(t−s)||ĝ(s)||ds,

where kα = δ(1− γ) + λαJ+1γ.

By Cauchy-Schwarz inequality, we have

||A
r
2 II|| ≤ C

(∫ t

0

((t− s)
−r
2α e−kα(t−s))2ds

) 1
2
(∫ t

0

||ĝ(s)||2ds
) 1

2
.

Note that r < α, we obtain, with λJ+1 = (J + 1)2π2,∫ t

0

e−2kαs

s
r
s

ds ≤
∫ ∞

0

e−2kαs

s
r
s

ds ≤
∫∞

0
s

−r
α e−2sds

k
1− r

α
α

≤ C
1

k
1− r

α
α

≤ C
1

(λαJ+1)1− r
α

≤ C
1

(J + 1)2α(1− r
α)

.

Hence we have

||A
r
2 II|| ≤ C

1

(J + 1)2α(1− r
α

)

(∫ t

0

||ĝ(s)||2ds
) 1

2
.

Together these estimates complete the proof of Theorem 6.3.1.

Combining Theorem 6.2.1 with Theorem 6.3.1, we obtain the following Theorem.

Theorem 6.3.2. Let u and ûJ be the solutions of (6.1.5)-(6.1.7) and (6.1.21)-(6.1.23)

respectively. Assume that the Assumptions (6.1.15)-(6.1.17) hold. Further assume that

u0 ∈ D(Aα), 1
2
< α ≤ 1 and E||Aαu0||2 <∞. Then we have
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E
∫ T

0

∫ 1

0

(u(t, x)− ûJ(t, x))2dxdt

≤ C
( ∞∑
k=1

(αMk )2

2λαk
+ ∆t2

∞∑
k=1

(
λαkβ

M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
+ CE||u0 − PJu0||2 + C

1

(J + 1)2α

(
∆tE||Aαu0||2 + ∆t

∞∑
k=1

λαk (βMk )2 +
∞∑
k=1

(βMk )2
)
.

Proof. Note that

E
∫ T

0

∫ 1

0

(u(t, x)− ûJ(t, x))2dxdt

≤ 2E
∫ T

0

∫ 1

0

(u(t, x)− û(t, x))2dxdt+ 2E
∫ T

0

∫ 1

0

(û(t, x)− ûJ(t, x))2dxdt

= 2I + 2II.

For I, we have, by Theorem 6.2.1,

I ≤ C
( ∞∑
k=1

(αMk )2

2λαk
+ ∆t2

∞∑
k=1

(λαkβ
M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
.

For II, we have

II = E
∫ T

0

||û(t)− ûJ ||2dt ≤ CE||u0 − PJu0||2 + C
1

(J + 1)2α

∫ T

0

∫ t

0

||ĝ(s)||2dsdt.

Note that ĝ(s) = dû(s)
ds

+ (−∆)αû(s), we obtain, by Theorem 6.2.3,

E
∫ T

0

∫ t

0

||ĝ(s)||2dsdt ≤ E
∫ T

0

∫ t

0

||dû(s)

ds
+ (−∆)αû(s)||2dsdt

≤ CE
∫ T

0

∫ T

0

∫ t

0

(∣∣∣∂û(s, x)

∂s

∣∣∣2 +
∣∣∣(−∆)αû(s, x)

∣∣∣)2

dxdsdt

≤ C
(

∆tE||Aαu0||2 + ∆t
∞∑
k=1

λαk (βMk )2 +
∞∑
k=1

(βMk )2
)
.

Together these estimates complete the proof of Theorem 6.3.2.

6.4 Numerical Simulations

Here, we will consider the numerical simulation of the Fourier spectral methods for solving

the following semilinear stochastic space fractional partial differential equation subject to

the periodic boundary conditions, with 1
2
< α ≤ 1 , 0 < x < 1, 0 < t ≤ T ,
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∂u(t, x)

∂t
+ ε(−∆)αu(t, x) = f(u(t, x)) +

∂2W (t, x)

∂t∂x
, (6.4.1)

u(t, 0) = u(t, 1) = 0, úx(t, 0) = úx(t, 1), (6.4.2)

u(0, x) = u0(x), (6.4.3)

where (−∆)α is the fractional Laplacian defined by using the eignvalues and eigenfunctions

of the Laplacian −∆ subject to the periodic boundary conditions. Here f : R → R is a

smooth function and ε > 0 denotes the diffusion coefficient. Here we consider the problems

with the periodic boundary conditions because we want to compare our numerical results

with the results in [62, Example 10.39]. Where the algorithms of the spectral methods

for stochastic semilinear parabolic equation subject to the periodic boundary conditions

are given and discussed. One may also consider the algorithms and MATLAB codes

for stochastic space fractional partial differential equations with homogeneous boundary

conditions following the approaches in, e.g., [42], [43]. Although the Laplacian is singular

in (6.4.1)-(6.4.3) due to the periodic boundary conditions, we expect the error to behave

as in Theorem 6.3.1, see the comments in [62, Corollary 10.38].

Denotes, A = − ∂2

∂x2 with D(A) = H2
per(0, 1), where D(A) = H2

per(0, 1) is defined in the

introduction section. Then the eigenvalues and eigenfunctions of A can also be expressed

by

λk = (2πk)2, ek = ei2πkx, k ∈ Z.

The noise has the form of

∂2W (t, x)

∂t∂x
=
∑
k∈Z

σk(t)β̇k(t)ek(x), (6.4.4)

where β̇k(t) = dβk(t)
dt

, k ∈ Z are the derivatives of the standard Brownian motions βk(t), k ∈

Z and σk(t), k ∈ Z are some appropriate functions of t. Here k ∈ Z since we consider the

periodic boundary conditions. When σk(t) = γ̄
1
2
k , γ̄k > 0, k ∈ Z, the noise (6.4.4) reduces

to

∂2W (t, x)

∂t∂x
=
∑
k∈Z

γ̄
1
2
k β̇k(t)ek(x). (6.4.5)
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The approximation noise ∂2Ŵ (t,x)
∂t∂x

is, with some positive integer M > 0,

∂2Ŵ (t, x)

∂t∂x
=

∑
k∈Z|k|≤M

γ̄
1
2
k ek(x)

Nt∑
l=1

ηk,l
∆t

χl(t). (6.4.6)

In our numerical example below, we assume that, [62, Example 10.8],

γ̄0 = 0, γ̄k = |k|−(2r1+1+ε̄), k ∈ Z, k 6= 0, (6.4.7)

where ε̄ > 0 is a small positive number. When r1 = −1
2

we obtain so-called space-time

white noise. When r1 = 1 we obtain the smooth noise.

Let SJ := span{e0, e1 · · · , eJ
2
, e−J

2
+1 · · · , e−1}. We assume J ≤ M where M is deter-

mined in (6.4.5). Here the ordering 0, 1, 2, · · · , J
2
,−J

2
+ 1, · · · ,−1 is consistent with the

ordering of the MATLAB functions fft and ifft [92]. Let 0 = t0 < t1 < t2 < · · · < tNt =

T, Nt ∈ N be the partition of [0, T ] and ∆t the time step size with T = Nt∆t. We use

the semi-implicit Euler method to consider the time discretization.

We will consider the convergence rate against the different type of steps. Choose

J=64. The reference solution is obtained by using the time step size ∆tref = T/Nref with

Nref = 104. Let kappa = [5, 10, 20, 50, 100, 200, 500], we will consider the approximate

solutions with the different time step sizes ∆ti = ∆tref ∗ kappa(i), i = 1, 2, · · · , 7. By

Theorem 6.2.1, we have

E
∫ T

0

∫ 1

0

(
u(t, x)− û(t, x)

)2

dxdt

≤ C
(∑
k∈Z

(αMk )2

2λαk
+ ∆t2

∑
k∈Z

(
λαkβ

M
k + γMk

)2

+ ∆t1+ ᾱ
α
− 1

2α

)
. (6.4.8)

We remark that here we choose k ∈ Z since we consider the periodic boundary condi-

tions. In our numerical example, we will choose, with γ̄k given by (6.4.7),

σk(t) = γ̄
1
2
k , γ̄k > 0, k ∈ Z,

σMk (t) =

 σk(t) = γ̄
1
2
k , |k| ≤M,

0, |k| > M,

which implies that

|σMk (t)| ≤ βMk ,where βMk = γ̄
1
2
k , |k| ≤M,
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and

|σk(t)− σMk (t) ≤ αMk ,where αMk ,= γ̄
1
2
k , |k| ≥M.

We first observe that for sufficiently large M the convergence order of the L2 norm of

the errors in (6.4.8) is dominated by O(∆t
1
2

(1+ ᾱ
α
− 1

2α
)). In fact, we will choose M = J

where J is sufficiently large. Then the first term of the right side of (6.4.8) satisfies, with

λk = (2πk)2, k ∈ Z,∑
k∈Z

(αMk )2

2λαk
=
∑
|k|>M

(αMk )2

2λαk
≤ C

( 1

λαM+1

+
1

λαM+2

+ . . .
)

≤ C
( 1

(M + 1)2α
+

1

(M + 2)2α
+ . . .

)
= C

( 1

(J + 1)2α
+

1

(J + 2)2α
+ . . .

)
.

The second term of the right side of the error in (6.4.8) is O(∆t2). Hence for sufficiently

large J , the convergence order of the L2 norm of the errors in (6.4.8) is O(∆t
1
2

(1+ ᾱ
α
− 1

2α
)).

We now consider two cases r1 = −1
2

and r1 = 1 in (6.4.7). For r1 = −1
2

we may

choose ᾱ = 0 which implies that the convergence order of the L2 norm in (6.4.8) is

O(∆t
1
2

(1+ ᾱ
α
− 1

2α
)) = O(∆t

1
2

(1− 1
2α

)) . Indeed ᾱ = 0 satisfies (6.1.17) that is,

βMk = γ̄
1
2
k = |k|−

2r1+1+ε̄
2 = |k|−

ε̄
2 ≤ |k|−ᾱ.

For r1 = 1 we may choose ᾱ = 1
2
− ε̄ (since 0 ≤ ᾱ < 1

2
) with arbitrarily small

positive number ε̄ which implies that the convergence order of the L2 norm in (6.4.8) is

O(∆t
1
2

(1+ ᾱ
α
− 1

2α
)) = O(∆t

1
2

(1− ε̄
α

)) ≈ O(∆t
1
2 ). Indeed, in this case, ᾱ = 1

2
− ε̄ satisfies (6.1.17)

that is,

βMk = γ̄
1
2
k = |k|−

2r1+1+ε̄
2 = |k|−

3+ε̄
2 ≤ |k|−ᾱ.

Thus we have, by Theorem 6.2.1, the following error estimates, with 1
2
< α ≤ 1 and

r1 = −1
2
,

||û− u||L2(Ω,L2(0,T ),H)) ≤ C∆t
1
2

(1− 1
2α ), (6.4.9)

and with 1
2
< α ≤ 1 and r1 = 1

||û− u||L2(Ω,L2(0,T ),H)) ≤ C(∆t
1
2 ), (6.4.10)
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Figure 6.4.1: A plot of the error at T = 1 against log 2(∆t) with α = 0.8, r1 = −1
2

where the norm is measured in L2 both for time and space. In particular, when α =

1, r1 = −1
2
, we have

||û− u||L2(Ω,L2(0,T ),H)) ≤ C(∆t
1
4 ), (6.4.11)

which is consistent with the standard time discretization error for the stochastic heat

equation driven by space-time white noise, e.g., [95].

In our numerical experiments below, we choose f(u) = u− u3, u0(x) = sin(2πx), and

ε = 1 . See the simulation of this problem for α = 1 in [82]. We will consider the error

estimates ||û(tn) − u(tn)||L2(Ω,H) at time tn. We hope to observe the same convergence

order as in (6.4.9) and (6.4.10).

To do this, we consider M̄ = 100 simulations. For each simulation ωm,m = 1, 2 · · · , M̄ ,

we generate J independent Brownian motions βl, l = 0, 1, 2 · · · J
2
,−J

2
+1 · · · ,−1 and com-

pute ûJ(tn) ≈ û(tn) at time tn = 1 by using the different time stepsizes. We then compute

the following L2 norm of the error at tn = 1 for the simulation ωm,m = 1, 2, · · · , M̄ ,

ε(∆ti, ωm) = ε(∆ti, ωm, tn) = ‖ûJ(tn, ωm)− uref (tn, ωm)‖2,

where the reference (”true”) solution uref (tn, ωm) is approximated by using the time step

∆tref = T/Nref and Jref = J . We then average ε(∆ti, ωm) with respect to ωm to obtain

the following approximation of ‖ûJ(tn) − uref (tn)‖L2(Ω,H) for the different time step size

∆ti,

S(∆ti) =
( 1

M̄

M̄∑
m=1

ε(∆ti, ωm)
) 1

2
=
( 1

M̄

M̄∑
m=1

‖ûJ(tn, ωm)− uref (tn, ωm)‖2
) 1

2
.
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Figure 6.4.2: A plot of the error at T = 1 against log 2(∆t) with α = 0.8, r1 = 1

For example, in the case α = 0.8, r1 = −1
2
, the convergence rate against the time step size

is O(∆t
1
2

(1− 1
2α ) = O(∆t

3
16 ), i.e., with some positive constant C,

S(∆ti) ≈ C∆t
3
16
i ,

which implies that

log(S(∆ti)) ≈ log(C) +
3

16
log(∆ti), i = 1, 2, · · · 7.

In Figure 6.4.1, we consider the case α = 0.8, r1 = −1
2
, and plot the points

(log((∆ti), log(S(∆ti)), i = 1, 2, · · · , 7 and we observed that the experimentally de-

termined convergence order is higher than the theoretical order in this case. Here the

reference line has the slop 3
16

.

In Figure 6.4.2, we consider the case α = 0.8, r1 = 1 and in this case the theoretical

convergence order with respect to the time step size is O(∆t
1
2 ). We plot the points

(log(∆ti), log(S(∆ti)), i = 1, 2, · · · , 7 and we observe that the experimentally determined

convergence order is also higher than the theoretical order in this case. Here the reference

line has the slop 1
2
.



Chapter 7

Discontinuous Galerkin Time

Stepping Method for Solving Linear

Space Fractional Partial Differential

Equations

7.1 Introduction

In this chapter, we will consider the discontinuous Galerkin time stepping methods for

solving the linear space fractional partial differential equations. The space fractional

derivatives are defined by using Riesz fractional derivative. The space variable is dis-

cretized by means of a Galerkin finite element method and the time variable is discretized

by the discontinuous Galerkin method. The approximate solution will be sought as a

piecewise polynomial function in t of degree at most q− 1, q ≥ 1, which is not necessarily

continuous at the nodes of the defining partition. The error estimates in the fully discrete

case are obtained and the numerical examples are given.

Now we will consider the discontinuous Galerkin time stepping methods for solving the

following linear space fractional partial differential equation, with 1
2
< α ≤ 1,

102
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∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x), 0 < t < T, 0 < x < 1, (7.1.1)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (7.1.2)

u(0, x) = u0(x), 0 < x < 1, (7.1.3)

where the Riesz fractional derivative is defined by, [76], [80]

∂2αw(x)

∂|x|2α
= − 1

2 cos (απ)
( R0 D

2α
x w(x) + R

xD
2α
1 w(x)),

and R
0 D

γ
xw(x) and R

xD
γ
1w(x), 1 < γ < 2 are called the left-sided and right-sided Riemann-

Liouville fractional derivatives, respectively,

R
0 D

γ
xw(x) =

1

Γ(2− γ)

d2

dx2

∫ x

0

(x− y)1−γw(y)dy, (7.1.4)

and

R
xD

γ
1w(x) =

1

Γ(2− γ)

d2

dx2

∫ 1

x

(y − x)1−γw(y)dy. (7.1.5)

Space fractional partial differential equations are widely used to model complex phe-

nomena, for example, in quasi-geostrophic flow, the fast rotating fluids, the dynamic of

the frontogenesis in meteorology, the diffusion in fractal or disordered medium, the pollu-

tion problems, the mathematical finance and the transport problems, soil contamination

and underground water flow, see, e.g.,[9], [11], [20], [72].

In recent years, many authors consider the numerical methods for solving space frac-

tional partial differential equations, e.g., finite difference methods [4], [5], [69], [70] finite

element methods [25], [26] and spectral methods [14], [15], matrix transfer technique

(MTT) [41]. Recently, Jin et al. [45] considered the finite element method for solving

the linear space fractional parabolic equation where the space fractional derivative is de-

fined as left-handed Riemann-Liouville derivative, see also [44]. The estimates in [45] are

for both smooth and nonsmooth initial data, and are expressed directly in terms of the

smoothness of the initial data.

The Riesz space fractional partial differential equations are firstly proposed by Chaves

[18] to investigate the mechanism of super-diffusion. Benson et al. [9], [10] considered

the fractional order governing equation of Levy motion. Zhang et al. [103] considered a
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finite element method in space and backward difference method in time for solving Riesz

space fractional partial differential equation. Sousa [86] studied a second order numerical

method for Riesz space fractional convection-diffusion equation. Bu et al. [13] considered

a finite element method in space and Crank-Nicolson method in time for solving Riesz

space fractional partial differential equations in two-dimensional case. Duan et al. [22]

studied a finite element method in space and backward Euler method in time for solving

Riesz space fractional partial differential equations in two-dimentional case.

In this chapter, we will consider a finite element method in space and discontinuous

Galerkin method in time for solving Riesz space fractional partial differential equation.

When the approximating functions are piecewise constant in time, we proved the error

is O(h2(r−α) + kn) and the bound contains the terms ||u||r,Jn and ||ut||r,Jn , see Theorem

7.3.1 below. When the approximating functions are piecewise linear in time, we proved

the error is O(h2(r−α) + k3
n) and the bound contain the terms ||u||r,Jn and ||utt||r,Jn , see

Theorem 7.3.3 below. The advantages of the discontinuous Galerkin method is that, e.g.,

variable coefficients and nonlinearities present no complication in principle. We obtain

precise error estimates for the discontinuous Galerkin method which make it possible to

construct the adaptive methods based on the automatic time-step control.

Definition 7.1.1. [31], [57] For any σ > 0, we define the space lHσ
0 (0, 1) and rHσ

0 (0, 1)

to be the the closure of C∞0 (0, 1) with respect to the norms ||v||lHσ
0 (0,1) and ||v||rHσ

0 (0,1),

respectively, where

||v||2lHσ
0 (0,1) := ||v||2L2(0,1) + ||R0 Dσ

xv||2L2(0,1), (7.1.6)

and

||v||2rHσ
0 (0,1) := ||v||2L2(0,1) + ||RxDσ

1 v||2L2(0,1). (7.1.7)

The semi-norms are defined by |v|lHσ
0 (0,1) := ||R0 Dσ

xv||L2(0,1) and |v|rHσ
0 (0,1) := ||RxDσ

1 v||L2(0,1),

respectively.

Remark 3. In Definition 7.1.1, |v|lHσ
0 (0,1), σ > 0 is a semi-norm (not a norm) since

|v|lHσ
0 (0,1) = 0 does not imply v = 0. For example, when 0 < σ < 1, let w(x) = xσ−1, we
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have w(x) 6= 0 and

R
0 D

σ
xw(x) =

1

Γ(1− σ)

d

dx

∫ x

0

(x− y)−σw(y)dy =
1

Γ(1− σ)

d

dx

∫ x

0

(x− y)−σyσ−1dy,

=
1

Γ(1− σ)

d

dx

∫ 1

0

t−α(1− t)σ−1dt = 0,

which implies that |w|lHσ
0 (0,1) = ||R0 Dσ

xw||L2(0,1) = 0. The similar comments are for the

semi-norm |v|rHσ
0 (0,1) and the semi-norm in Definitions 7.1.2 below.

Definition 7.1.2. [31], [57] For any σ > 0, σ 6= n − 1
2
, n ∈ Z+, we define the space

cHσ
0 (0, 1) to be the closure of C∞0 (0, 1) with respect to the norm ||v||cHσ

0 (0,1), where

||v||2cHσ
0 (0,1) := ||v||2L2(0,1) +

∣∣∣( R0 Dσ
xv,

R
xD

σ
1 v)
∣∣∣.

The semi-norm is defined by |v|2cHσ
0 (0,1) := |( R0 Dσ

xv,
R
xD

σ
1 v)|.

Definition 7.1.3. [31], [57] For any σ > 0, let Hσ(R) denote the fractional Sobolev space

defined in the whole line R. We define

Hσ(0, 1) = {v ∈ L2(0, 1) : ṽ|(0,1) = v,where ṽ ∈ Hσ(R)},

with the norm

||v||Hσ(0,1) = infṽ∈Hσ(R),ṽ|(0,1)=v||ṽ||Hσ(R),

where

||ṽ||Hσ(R) = ||(1 + |w|2)
σ
2F(ṽ)(w)||L2(R), (7.1.8)

and F(ṽ) denotes the Fourier transform of ṽ and the corresponding semi-norm is defined

by |ṽ|Hσ(R) = |||w|σF(ṽ)||L2(R). Further we define the Sobolev space Hσ
0 (0, 1) to be closure

of C∞0 (0, 1) with respect to the norm ||v||Hσ(0,1) and the semi-norm in Hσ
0 (0, 1) is denoted

by |v|Hσ
0 (0,1).

Lemma 7.1.1. [31, Theorem 2.12, 2.13], [57, Lemma 2.4, 2.5] Let σ > 0, σ 6= n − 1
2
,

n ∈ Z+. The semi-norms and norms in spaces lHσ
0 (0, 1), rHσ

0 (0, 1), cHσ
0 (0, 1) and Hσ

0 (0, 1)

are equivalent.
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Lemma 7.1.2. Let σ > 0, σ 6= n− 1
2
, n ∈ Z+, we have

(R0 D
σ
xv,

R
xD

σ
1 v) = cos(πσ)||R0 Dσ

xv||2, ∀v ∈ Hσ
0 (0, 1).

In particular, (R0 D
σ
xv,

R
xD

σ
1 v) is negative when 1

2
< σ ≤ 1.

Proof. It is sufficient to prove

(R0 D
σ
xϕ,

R
xD

σ
1ϕ) = cos(πσ)||R0 Dσ

xϕ||2, ∀ϕ ∈ C∞0 (0, 1).

In fact, we have, for any ϕ ∈ C∞0 (0, 1), [57],

(R0 D
σ
xϕ,

R
xD

σ
1ϕ) = (R−∞D

σ
x ϕ̃,

R
xD

σ
∞ϕ̃)L2(R) = cos(πσ)||R−∞Dσ

x ϕ̃||2L2(R) = cos(πσ)||R0 Dσ
xϕ||2,

where ϕ̃ is the extension of ϕ by zero outside of (0, 1).

Lemma 7.1.3. Let 1
2
< α ≤ 1. We have, see [57],

(R0 D
2α
x w, v) = (R0 D

α
xw,

R
xD

α
1 v), ∀w, v ∈ Hα

0 (0, 1),

(RxD
2α
1 w, v) = (RxD

α
1w,

R
0 D

α
xv), ∀w, v ∈ Hα

0 (0, 1).

We also have the following fractional Poincáre inequality:

Lemma 7.1.4. [31], [32], [57] Let u ∈ Hα
0 (0, 1), 1

2
< α ≤ 1. We have

||u||L2(0,1) ≤ C|u|Hα
0 (0,1),

and for 0 < s < µ, s 6= n− 1
2
, n ∈ Z+,

|u|Hs
0(0,1) ≤ C|u|Hµ

0 (0,1).

Multiplying v ∈ Hα
0 (0, 1) in both sides of the equation (7.1.1) and integrating on (0, 1)

we get, by Lemma 7.1.3,

(ut, v) +Bα(u, v) = (f, v), ∀v ∈ Hα
0 (0, 1), (7.1.9)

u(0) = u0, (7.1.10)

where the bilinear form Bα(., .) is defined by

Bα(u, v) =
1

2 cos (απ)
((R0 D

α
xu,

R
xD

α
1 v) + (RxD

α
1 u,

R
0 D

α
xv)). (7.1.11)
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By Lemmas 7.1.1, 7.1.2, and 7.1.4, it is easy to show that the bilinear form Bα(., .) is

symmetric, continuous and coercive on Hα
0 (0, 1), 1

2
< α ≤ 1.

Let Sh ⊂ Hα
0 (0, 1), 1

2
< α ≤ 1 be the piecewise continuous linear finite element space.

The finite element method of ( 7.1.1)-(7.3.12) is to find uh(t) ∈ Sh such that

(uh,t, χ) +Bα(uh, χ) = (f, χ), ∀χ ∈ Sh, (7.1.12)

uh(0) = vh, (7.1.13)

where vh ∈ Sh is some appropriate approximation of u0 ∈ L2(0, 1).

7.2 The Backward Euler Method

In this section, we will consider the error estimates of the backward Euler method for

solving (7.1.9)-(7.1.10). Let us first consider the error estimates for solving (7.1.9)-(7.1.10)

in the semidiscrete case.

To do this, we need to introduce the regularity assumption for the following fractional

elliptic problem, with 1
2
< α ≤ 1, g ∈ L2(0, 1).

− ∂2αw(x)

∂|x|2α
=

1

2 cos (απ)

(
R
0 D

2α
x w(x) +R

x D
2α
1 w(x)

)
= g(x), 0 < x < 1, (7.2.1)

w(0) = w(1) = 0. (7.2.2)

The variational form of (7.2.1)-(7.2.2) is to find w ∈ Hα
0 (0, 1) such that

Bα(ω, ϕ) = (g, ϕ), ∀ϕ ∈ Hα
0 (0, 1). (7.2.3)

Assumption 7.2.1. Let 1
2
< α ≤ 1. For ω solving (7.2.3) with g ∈ L2(0, 1), there exists

some r ∈ [α, 2α], such that

||ω||Hr
0 (0,1) ≤ C||g||L2(0,1).

Remark 4. Suppose that the equation (7.2.1) only contains the left-sided Riemann-

Liouville derivative, Jin et al. [45, Lemma 4.2] and [44, Theorem 4.4] shows that r =

2α− 1 + β, 0 ≤ β < 1
2

for 1
2
< α ≤ 1 in the Assumption 7.2.1. For the equation (7.2.1)

with the Riesz fractional derivative, we have at least ω ∈ Hα
0 (0, 1). Further we assume

that, by the Assumption 7.2.1, there exists r ∈ [α, 2α] such that ω ∈ Hr(0, 1) ∩Hα
0 (0, 1).

This similar assumption was also used in [31, Assumption 6.3.1].
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We next introduce the fractional Ritz projection Rh,α on Sh.

Definition 7.2.1. Let 1
2
< α ≤ 1 and let v ∈ Hα

0 (0, 1). We define Rh,α : Hα
0 (0, 1) → Sh

by

Bα(Rh,αv, χ) = Bα(v, χ), ∀χ ∈ Sh, v ∈ Hα
0 (0, 1). (7.2.4)

It is easy to see that Rh,α : Hα
0 (0, 1) → Sh is well defined since Bα(., .) is symmetric,

continuous and coercive on Sh. Further we have, see [31],

Lemma 7.2.2. Let v ∈ Hr(0, 1) ∩ Hα
0 (0, 1), 1

2
< α ≤ 1, α ≤ r ≤ 2α and let Rh,α :

Hα
0 (0, 1) → Sh be the fractional Ritz projection onto Sh defined as in (7.2.4). Then,

under Assumption 7.2.1, there exists a constant C = C(α) such that

||Rh,αv − v||+ hr−α|Rh,αv − v|Hα
0 (0,1) ≤ Ch2(r−α)||v||Hr(0,1). (7.2.5)

Theorem 7.2.3. Let uh and u be the solutions of (7.1.12)-(7.1.13) and (7.1.9)-(7.1.10),

respectively. Let α ≤ r ≤ 2α, 1
2
< α ≤ 1. Let u0 ∈ Hr(0, 1). Then under the Assumption

7.2.1, there exists a constant C = C(α) such that

||uh(t)− u(t)|| ≤ ||vh − u0||+ Ch2(r−α)
(
||u0||Hr(0,1) +

∫ t

0

||ut(s)||Hr(0,1)ds
)
. (7.2.6)

Proof. We have

uh(t)− u(t) = θ(t) + ρ(t),

where θ(t) = uh(t)−Rh,αu(t) and ρ(t) = Rh,αu(t)− u(t).

By Lemma 7.2.2, we have, with 1
2
< α ≤ 1,

||ρ(t)|| ≤ Ch2(r−α)||u(t)||Hr(0,1).

Note that

u(t) = u(0) +

∫ t

0

ut(s)ds,

we get

||ut||Hr(0,1) ≤ ||u0||Hr(0,1) +

∫ t

0

||ut(s)||Hr(0,1)ds.

Hence we have

||ρ(t)|| ≤ Ch2(r−α)
(
||u0||Hr(0,1) +

∫ t

0

||ut(s)||Hr(0,1)ds
)
.
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We next consider the estimates for θ(t). Note that θ(t) satisfies

(θt, χ) +Bα(θ, χ) = (uh,t, χ) +Bα(uh, χ)− (Rh,αut, χ)−Bα(u, χ)

= (f, χ)− (Rh,αut, χ)−Bα(u, χ) = (ut −Rh,αut, χ)

= (−ρt, χ), ∀χ ∈ Sh.

Choose χ = θ, we get

(θt, θ) +Bα(θ, θ) = −(ρt, θ),

which implies, by Lemma 7.1.1,

1

2

d

dt
||θ||2 + C|θ|2Hα

0 (0,1) ≤ −(ρt, θ) ≤ ||ρt||||θ||.

Note that |θ|2Hα
0 (0,1) > 0, we get

1

2

d

dt
||θ||2 ≤ −(ρt, θ) ≤ ||ρt||||θ||,

which implies that

d

dt
||θ(t)|| ≤ ||ρt(t)||.

Hence

||θ(t)|| ≤ ||θ|(0)||+
∫ t

0

||ρt(s)||ds ≤ ||uh(0)−Rh,αu(0)||+
∫ t

0

Ch2(r−α)||ut(s)||Hr(0,1)ds.

≤ ||uh(0)− u(0)||+ Ch2(r−α)||u(0)||Hr(0,1) +

∫ t

0

Ch2(r−α)||ut(s)||Hr(0,1)ds.

Together these estimates complete the proof of Theorem 7.2.3.

We now introduce the backward Euler method for solving (7.1.9)-(7.1.10). Let 0 =

t0 < t1 < t2 < · · · < TN = T be a partition of [0, T ] and k be the time step size. Let

Un ≈ uh(tn) be the approximation of uh(tn). The backward Euler method for solving

(7.1.9)-(7.1.10) is to find Un ∈ Sh, such that

(Un − Un−1

k
, χ
)

+Bα(Un, χ) = (f(tn), χ), ∀χ ∈ Sh, (7.2.7)

U0 = vh, (7.2.8)
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or

(Un, χ) + kBα(Un, χ) = (Un−1 + kf(tn), χ), (7.2.9)

U0 = vh. (7.2.10)

Theorem 7.2.4. Let Un and u(tn) be the solutions of (7.2.7) and (7.1.9) respectively.

Let α ≤ r ≤ 2α, 1
2
< α ≤ 1. Assume that u0 ∈ Hr(0, 1) and

||vh − u0|| ≤ Ch2(r−α)||u0||Hr(0,1).

We have, under the Assumption 7.2.1 with n = 1, 2, · · · , N,

||Un − u(tn)|| ≤ Ch2(r−α)
(
||u0||Hr(0,1) +

∫ tn

0

||ut||Hr(0,1)ds
)

+ k

∫ tn

0

||utt||ds.

Proof. We write

Un − u(tn) = (Un −Rh,αu(tn)) + (Rh,αu(tn)− u(tn)) = θn + ρn.

Hence ρn = ρ(tn) is bounded by

||ρn|| = ||Rh,αu(tn)− u(tn)|| ≤ Ch2(r−α)||u(tn)||Hr(0,1) ≤ Ch2(r−α)||u0 +

∫ t

0

ut(s)ds||Hr(0,1)

≤ Ch2(r−α)
(
||u0||Hr(0,1) +

∫ t

0

||ut||Hr(0,1)ds
)
.

We next estimate θn. Note that θn satisfies, by (7.2.7) and (7.1.9),(θn − θn−1

k
, χ
)

+Bα(θn,∆χ) (7.2.11)

=
(Un − Un−1

k
, χ
)
−
(
Rh,α

u(tn)− u(tn−1)

k
, χ
)

+Bα(Un, χ)−Bα(Rh,αu(tn), χ)

= (ut(tn), χ)−
(
Rh,α

u(tn)− u(tn−1)

k
, χ
)

=
(
ut(tn)− u(tn)− u(tn−1)

k
, χ
)

+
(u(tn)− u(tn−1)

k
−Rh,α

u(tn)− u(tn−1)

k
, χ
)

= −(wn, χ),

where wn = wn1 + wn2 ,

wn1 = (Rh,α − I)
u(tn)− u(tn−1)

k
, wn2 =

u(tn)− u(tn−1)

k
− ut(tn).

Choose χ = θn in (7.2.11), we have

(θn, θn)− (θn−1, θn) + kBα(θn, θn) = −k(wn, θn).
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Note that, by the coercivity property, Bα(θn, θn) ≥ 0, we have

||θn||2 − (θn−1, θn) ≤ k||wn||||θn||,

or

||θn||2 ≤ ||θn−1||||θn||+ k||wn||||θn||.

Cancelling ||θn||, we get

||θn|| ≤ ||θn−1||+ k||wn||.

By repeated application, we have

||θn|| ≤ ||θ(0)||+ k
n∑
j=1

||wj|| ≤ ||θ(0)||+ k

n∑
j=1

||wj1||+ k

n∑
j=1

||wj2||.

Noting that

wj1 = (Rh,α − I)
u(tj)− u(tj−1)

k
,

= (Rh,α − I)k−1

∫ tj

tj−1

ut(s)ds = k−1

∫ tj

tj−1

(Rh,α − I)ut(s)ds,

we have

k
n∑
j=1

||wj1|| ≤
n∑
j=1

∫ tj

tj−1

||(Rh,α − I)ut(s)||ds,

≤
n∑
j=1

∫ tj

tj−1

Ch2(r−α)||ut||Hr(0,1)ds ≤ Ch2(r−α)

∫ tn

0

||ut||Hr(0,1)ds.

Further, we have

kwj2 = u(tj)− u(tj−1)− kut(tj) = −
∫ tj

tj−1

(s− tj−1)utt(s)ds.

We therefore obtain

k
n∑
j=1

||wj2|| ≤
n∑
j=1

||
∫ tj

tj−1

(s− tj−1)utt(s)||ds ≤ k
n∑
j=1

∫ tj

tj−1

||utt(s)||ds = k

∫ tn

0

||utt(s)||ds.

Together these estimates complete the proof of Theorem 7.2.4.
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7.3 The Discontinuous Galerkin Time Stepping Method

In Section 7.2, we obtain the error estimates for solving (7.1.9)-(7.1.10) by using the finite

element method in space and backward Euler method in time. The error is O(h2(r−α) +

k), α ≤ r ≤ 2α, 1
2
< α ≤ 1 and the bounds contain the terms

∫ tn
0
||ut(s)||Hr(0,1) ds and∫ tn

0
||utt(s)||ds. In this section, we will consider the discontinuous Galerkin time stepping

method for solving (7.1.9). When the approximating functions are piecewise constant in

time, we proved that, in Theorem 7.3.1, the error is O(h(r−α) + kn) and error bounds

contain the terms ||u||r,Jn and ||ut||α,Jn . When the approximating functions are piecewise

linear in time, we prove that the error is O(h2(r−α) +k3
n) and the bounds contain the terms

||u||r,Jn and ||utt||α,Jn , see Theorem 7.3.3.

Let 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = T be the time partition of [0, T ]. Let

kn = tn − tn−1, n = 1, 2, 3 . . . N be the time step size. Denote Jn = (tn−1, tn]. Define

Skh = {X; [0, T ] 7→ Sh, X|Jn =

q−1∑
j=0

Xjt
j, Xj ∈ Sh},

where q is a given positive integer and X = X(t) ∈ Skh is left continuous at the dis-

cretization point tn, but not necessarily right continuous at tn−1 on each subinterval

Jn = (tn−1, tn], n = 1, 2, . . . , N. Denote Xn
− = X(tn−) = limt7→t−nX(t) and Xn−1

+ =

X(tn−1+) = limt7→tn−1 + X(t). We then have Xn
− = X(tn) = Xn. Further, let Snkh denote

the restriction of Skh on Jn = (tn−1, tn].

The discontinuous Galerkin time stepping method of (7.1.9)-(7.1.10) is to find U =

U(t) ∈ Snkh such that, with n = 1, 2, . . . , N , and ∀X ∈ Snkh,

∫ tn

tn−1

[
(Ut, X) +Bα(U,X)

]
dt+ (Un−1

+ , Xn−1
+ ) = (Un−1

− , Xn−1
+ ) +

∫ tn

tn−1

(f,X)dt,

(7.3.1)

U(tn−1) = Un−1
− , (7.3.2)

or ∫ tN

t0

[
(Ut, X) +Bα(U,X)

]
dt+

N−1∑
n=1

([U ]n, X
n
+) + (U0

+, X
0
+) = (U0

−, X
0
+) +

∫ tN

t0

(f,X)dt,

U(0) = U0
− = vh.
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Here [U ]n = Un
+ − Un

− denotes the jump of U at tn, n = 1, 2, · · ·N − 1.

Denote

B̄α(U,X) =

∫ tN

t0

[(Ut, X) +Bα(U,X)]dt+
N−1∑
n=1

([U ]n, X
n
+) + (U0

+, X
0
+).

Then the discontinuous Galerkin time stepping method of (7.1.9)-(7.1.10) is to find U ∈

Skh such that

B̄α(U,X) = (U0
−, X

0
+) +

∫ tN

t0

(f,X)dt, ∀X ∈ Skh. (7.3.3)

We remark that in the case q = 1, (7.3.1)-(7.3.2) reduces to the following modified back-

ward Euler method

(Un, χ) + knBα(Un, χ) = (Un−1, χ) +
(∫ tn

tn−1

f(t)dt, χ
)
, ∀χ ∈ Sh. (7.3.4)

Note that the fn = f(tn) occurring the standard backward Euler method (7.2.9)-(7.2.10)

has been replaced by an average of f over (tn−1, tn). The standard backward Euler method

may thus be interpreted as resulting from (7.3.4) after quadrature. We have the following

Theorem.

Theorem 7.3.1. Assume that kn+1/kn ≥ c > 0 for n ≥ 1 and let q = 1. Let Un and

u(tn) be the solutions of (7.3.1)-(7.3.2) and (7.1.9)-(7.1.10), respectively. Let α ≤ r ≤

2α, 1
2
< α ≤ 1. Then we have, under the Assumption 7.2.1 with vh = Phu0, u0 ∈ L2(0, 1),

||UN − u(tN)|| ≤ CLN max
n≤N

(hr−α||u||r,Jn + kn||ut||α,Jn), (7.3.5)

where LN = 1 + (log tN
kN

)
1
2 and ||ϕ||s,Jn = supt∈Jn ||ϕ(t)||Hs(0,1), s = α, r.

Denote Aα : D(Aα)→ L2(0, 1) by

Bα(ϕ, ψ) = (Aαϕ, ψ), ∀ϕ ∈ D(Aα), ψ ∈ Hα
0 (0, 1). (7.3.6)

We may consider the following backward homogeneous problem

− zt + Aαz = 0, for t < tN , (7.3.7)

z(tN) = ϕ. (7.3.8)

We next introduce the discrete fractional elliptic operator Ah,α : Sh → Sh by, with

1
2
< α ≤ 1,

(Ah,αψ, χ) =
1

2cos(πα)

[(
R
0 D

α
xψ,

R
xD

α
1χ
)

+
(
R
xD

α
1ψ,

R
0 D

α
xχ
)]
, ∀ψ, χ ∈ Sh.
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The semidiscreat problem of (7.3.7)-(7.3.8) is then to find zh ∈ Sh such that

− zh,t + Ah,αzh = 0, for t < tN , (7.3.9)

zh(tN) = Phϕ. (7.3.10)

The discontinous Galerkin time stepping method for (7.3.9)-(7.3.10) is to find Zh ∈ Snkh
such that∫ tn

tn−1

[
(Xh,−Zh,t +Bα(Xh, Ah,αZh)

]
dt+ (Xh(tn−), Zh(tn−)) (7.3.11)

= (Xh(tn−), Zh(tn+)), ∀Xh ∈ Snkh, (7.3.12)

Zh(tN+) = Zh(tN) = Phϕ. (7.3.13)

Here we use the fact that Bα(Xh, Zh) = (AhαXh, Zh) = (Xh, Ah,αZh).

We remark that (7.3.12)-(7.3.13) are obtained by transforming (7.3.9)-(7.3.10) into the

forward homogeneous problem and then apply the discontinuous Galerkin time stepping

method (7.3.1)-(7.3.2) to this forward homogenous problem. In fact, let t = T − s, we

assume

zh(t) = zh(T − s) = z̄h(s)

which implies that

zh,t = −z̄h,s, zh(tN) = z̄h(0).

Here (7.3.9)-(7.3.10) is equivalent to the following forward homogeneous problem

z̄h,t + Ah,αz̄h = 0, for t ≤ tN , (7.3.14)

z̄h(0) = Phϕ. (7.3.15)

The discontinuous Galerkin time stepping method of (7.3.14)-(7.3.15) is to find Z̄h ∈ Snkh
such that∫ tN−tn−1

tN−tn
[(Z̄h,s, X̄h) + (Ah,αZ̄h, X̄h)]ds+

(
Z̄((tN − tn)+), X̄h((tN − tn)+)

)
= (Z̄(tN − tn)−), X̄h((tN − tn)−)

)
, ∀X̄h ∈ Snkh,
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which implies that, with s = tN − t, Z̄h(s) = Zh(t), Z̄h,s(s) = −Zh,t(t),∫ tn

n−1

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt+ (Xh(tN − (tN − tn)+), Zh(tN − (tN − tn)+))

= (Xh(tN − (tN − tn)−), Zh(tN − (tN − tn)−), ∀Xh ∈ Snkh,

or ∫ tn

tn−1

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt+ (Xh(tn−), Zh(tn−))

= (Xh(tn−), Zh(tn+)), ∀Xh ∈ Snkh,

which is (7.3.12)-(7.3.13).

By summation with n = 1, 2, . . . , N, we get∫ tN

t0

[
Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt−

N−1∑
n=1

(Xh(tn−), [Zh]n) + (Xh(tN−), Zh(tN−))

= (Xh(tN−), Zh(tN+)) = (Xh(tN−), Phϕ), ∀Xh ∈ Skh.

It is easy to show that, by integration by parts with respect to t,

B̄α(Xh, Zh) =

∫ tN

t0

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt (7.3.16)

−
N−1∑
n=1

(Xh(tn−), [Zh]n

)
+ (Xh(tN−), Zh(tN−)).

Hence we see that the solution Zh ∈ Skh of (7.3.12)-(7.3.13) satisfies

B̄α(Xh, Zh) = (Xh(tN−), Phϕ) = (Xh(tN−), ϕ), ∀Xh ∈ Skh. (7.3.17)

Lemma 7.3.2. Assume that kn+1/kn ≥ c ≥ 0, n ≥ 1. Then we have, for the solution of

( 7.3.17),∫ tN

0

(
||Zh,t||+ ||Ah,αZh||

)
dt+

N∑
n=1

||[Zh]n|| ≤ CLN ||ϕ||, (7.3.18)

where LN = 1 + (log tN
kN

)
1
2 .

The proof is similar to the proof of [93,Lemma 12.3]. We omit the proof here.

Proof of Theorem 7.3.1. Let ū denote the piecewise constant function (with respect to t)

defined by ū(t) = u(tn), for t ∈ (tn−1, tn], we write

e = U − u = (U −Rh,αū) + (Rh,αū− u) = θ + ρ,
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where Rh,α is defined by (7.2.4). For ρ, we have, noting that ū(tN) = u(tN),

||ρN || = ||Rh,αū(tN)− u(tN)|| = ||Rh,αu(tN)− u(tN)|| ≤ Ch2(r−α)||u||Hr(0,1).

For θ, we have, with ϕ ∈ L2(0, 1), by (7.3.17),

B̄α(θ, Zh) = (θN , ϕ).

Thus we have

(θN , ϕ) = B̄α(θ, Zh) = B̄α(e− ρ, Zh) = B̄α(e, Zh)− B̄α(ρ, Zh).

Note that

B̄α(e,Xh) = B̄α(U − u,Xh) = 0, ∀Xh ∈ Skh.

In fact, we have, by (7.3.3),

B̄α(U,Xh) = (U0
−, Xh(0+)) +

∫ tN

t0

(f,Xh)dt, ∀Xh ∈ Skh.

Further we have

B̄α(u,Xh) =

∫ tN

t0

[
(ut, Xh) + (Aα,u, Xh)

]
dt+

N−1∑
n=1

([u]n, Xh(tn+)) + (u0
−, Xh(0+))

=

∫ tN

t0

(f,Xh)dt+ (u0
−, Xh(0+)).

Thus we obtain

B̄α(u,Xh) = (U0
− − u0

−, Xh(0+)) = (Phu0 − u0, Xh(t0+)) = 0.

Hence we have

(θN , ϕ) = −B̄α(ρ, Zh) = −
N∑
n=1

∫ tn

tn−1

[
(ρ,−Zh,t) +Bα(ρ, Zh)

]
+

N−1∑
n=1

(ρn[Zh]n)− (ρN , Phϕ).

(7.3.19)

Noting that

Bα(ρ, Zh) = Bα(Rh,αρ, Zh) = (Rh,αAh,αρ, Zh),
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and ρn = 0, n = 1, 2, · · ·N , we get

(θN , ϕ) = −
N∑
n=1

∫ tn

tn−1

(Rh,αρ,Ah,αZh)dt+
N−1∑
n=1

(ρn[Zh]n)− (ρN , Phϕ)

≤ max
n≤N

(
||ρ||Jn + ||Rh,αρ||Jn

)[ ∫ tN

0

||Ah,αZh||dt+
N−1∑
n=1

||[Zh]n||+ ||ϕ||
]
.

By (7.2.5) with r = α, we have

||Rh,αρ||Jn ≤ ||Rh,αρ− ρ||Jn + ||ρ||Jn ≤ Ch0||ρ||α,Jn + ||ρ||Jn ≤ C||ρ||α,Jn . (7.3.20)

We therefore have

||θN || ≤ CLN max
n≤N
||ρ||α,Jn .

Note that,

||ρ||α,Jn = ||Rh,αū− u||α,Jn ≤ ||(Rh,α − I)ū||α,Jn + ||ū− u||α,Jn

= ||(Rh,α − I)u(tn)||α,Jn + ||ū− u||α,Jn ≤ Chr−α||u(tn)||Hr(0,1) + Ckn||ut||α,Jn

≤ Chr−α||u||r,Jn + Ckn||ut||α,Jn .

Together these estimates complete the proof of Theorem 7.3.1

Theorem 7.3.3. Let q = 2 and assume that kn+1/kn ≥ c > 0 for n ≥ 1. Let Un and

u(tn) be the solutions of (7.3.1)-(7.3.2) and (7.1.9)-(7.1.10), respectively. Let α ≤ r ≤

2α, 1
2
< α ≤ 1 . Then we have, under the Assumption 7.2.1 with vh = Phu0, u0 ∈ L2(0, 1),

||UN − u(tN)|| ≤ CLN max
n≤N

(h2(r−α)||u||r,Jn + k3
n||utt||α,Jn),

where LN = 1 + (log tN
kN

)
1
2 and ||ϕ||s,Jn = supt∈Jn ||ϕ(t)||Hs(0,1), s = α, r.

Proof. Let Jn = (tn−1, tn], n ≥ 1 and let ū ∈ Sk denote the piecewise linear interpolation

defined by

ū(tn) = u(tn), n ≥ 0,∫
Jn

(ū(t)− u(t))dt = 0, n ≥ 1,
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i.e., ū interpolates at the nodal points, and the interpolation error is orthogonal to any

constant on Jn. This interpolation is uniquely defined and the error estimates read as

follows, see [93, (12.10) pp.186],

|ū(t)− u(t)|Hj
0(0,1) ≤ Ck3

n

∫
Jn

|utt(s)|Hj
0(0,1)ds, for t ∈ Jn, j = 0, 1. (7.3.21)

This time we find instead of (7.3.19),

(θN , ϕ) = −
N∑
n=1

∫
Jn

(−(ρ, Zh,t) +Bα(ρ, Zh))dt+
N−1∑
n=1

(ρn, [Zh]n)− (ρN , Phϕ).

Here we have, using the definition of ū,∫
Jn

(ρ, Zh,t)dt =

∫
Jn

(
Rh,αū− u, Zh,t

)
dt =

∫
Jn

(Rh,αu− u, Zh,t) dt.

By Lemma 7.3.2, we have∣∣∣ N∑
n=1

∫
Jn

(Rh,αu− u, Zh,t)dt
∣∣∣ ≤ max

n≤N
||Rh,αu− u||Jn

∫ tN

0

||Zh,t||dt

≤ CLNh
2(r−α) max

n≤N
||u||r,Jn||ϕ||,

and similarly∣∣∣N−1∑
n=1

(ρn, [Zh]n|+ |(ρN , Phϕ)
∣∣∣ ≤ max

n≤N
||Rh,αu− u)(tn)||

(N−1∑
n=1

||[Zh]n||+ ||Pnϕ||
)

≤ CLNh
2(r−α) max

n≤N
||u||r,Jn||ϕ||.

Finally, by the definition of Rh,α,

N∑
n=1

∫
Jn

Bα(ρ, Zh)dt =
N∑
n=1

∫
Jn

Bα(ū− u, Zh)dt

= −
N∑
n=1

∫
Jn

(Aα(ū− u), Zh)dt =
N∑
n=1

Kn.

By the Assumption 7.2.1 and definition of the interpolant ū, we have

|Kn| ≤ kn||ū− u||r,Jn
∫
Jn

||Zh,t||dt.

Thus we have
N∑
n=1

|Kn| ≤ max
n≤N

(kn||ū− u||r,Jn)
N∑
n=1

∫
Jn

||Zh,t||dt ≤ CLN max
n≤N

(k3
n||utt||r,Jn)||ϕ||.

Hence we get the following estimates

(θN , ϕ) ≤ CLN max
n≤N

(k3
n||utt||r,Jn + h2(r−α))||ϕ||.

Together these estimates complete the proof of Theorem 7.3.3.



119

7.4 Numerical Simulations

In this section, we will consider two numerical examples.

Example 5. Consider the following linear space fractional partial differential equation,

with 1
2
< α ≤ 1,

∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x), 0 < t < T, 0 < x < 1, (7.4.1)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (7.4.2)

u(0, x) = u0(x), 0 < x < 1, (7.4.3)

where u0(x) = 0 and f(t, x) = 2tx2(1− x)2 − t2(2− 12x+ 12x2). When α = 1, the exact

solution is u(t, x) = t2x2(1− x)2.

In the numerical simulation, we use the piecewise constant approximation in time

and the linear finite element approximation in space. We consider the experimentally

determined orders of convergence (”EOC”) for the different α at tn = 1. We choose

k = 0.001 and the different step size hi = 1
2i
, i = 1, 2, 3, 4, 5. Let e

(i)
n = ||u(tn)−Un||L2(0,1)

denote the L2 norm at tn = 1 obtained by using the different space step sizes hi = 1
2i
, i =

1, 2, 3, 4. Since the exact solution is not available, we will calculate the reference solution

(or ’true’ solution) u(tn) by using the very small time step size k = 0.0001 and space step

size h = 2−10. By Theorem 7.3.1, we have, with some α ≤ r ≤ 2α and 1
2
< α ≤ 1,

e(i)
n ≤ Chr−αi , (7.4.4)

which implies that the convergence order r − α satisfies

log2(
e

(i)
n

e
(i+1)
n

) ≈ log2(
hi
hi+1

)r−α = r − α.

In Table 7.4.1 we observe that the experimentally determined orders of convergence

(”EOC”) are 2α which is much better that the theoretical convergence order in Theorem

7.3.1.

Example 6. Consider the following linear space fractional partial differential equation,
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k h EOC(α = 0.6) EOC(α = 0.7) EOC(α = 0.8) EOC(α = 0.9)

0.001 1/2

0.001 1/4 2.0132 2.4290 2.4232 2.3176

0.001 1/8 1.3547 1.6634 2.0163 2.1684

0.001 1/16 1.3493 1.3635 1.5023 1.5863

Table 7.4.1: The experimentally determined orders of convergence (”EOC”) for the dif-

ferent α at tn = 1 in Example 5

k h EOC(α = 0.6) EOC(α = 0.7) EOC(α = 0.8) EOC(α = 0.9)

0.001 1/2

0.001 1/4 1.4233 1.5410 1.5249 1.4240

0.001 1/8 1.0621 1.1559 1.4353 1.6324

0.001 1/16 1.0171 1.1045 1.2011 1.5345

Table 7.4.2: The experimentally determined orders of convergence (”EOC”) for the dif-

ferent α at tn = 1 in Example 6

with 1
2
< α ≤ 1,

∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x) 0 < t < T, 0 < x < 1, (7.4.5)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (7.4.6)

u(0, x) = u0(x), 0 < x < 1, (7.4.7)

where u0(x) = x(1− x) and f(t, x) = 0.

In Table 7.4.2, we observe that the experimentally determined orders of convergence

(”EOC”) are also better than our theoretical convergence order O(hr−α), α ≤ r ≤ 2α in

Theorem 7.3.1. We will investigate this issue in our future work.



Chapter 8

An Analysis of the Modified L1

Scheme for the Time Fractional Partial

Differential Equations with

Nonsmooth Data

8.1 Introduction

We consider error estimates for the modified L1 scheme for solving time fractional partial

differential equation. Jin et al. (2016, An analysis of the L1 scheme for the subdiffifusion

equation with nonsmooth data, IMA J. of Number. Anal., 36, 197-221) established an

O(k) convergence rate for the L1 scheme for both smooth and nonsmooth initial data.

We introduce a modified L1 scheme and prove that the convergence rate is O(k2−α), 0 <

α < 1 for both smooth and nonsmooth initial data. We first write the time fractional

partial differential equations as a Volterra integral equation which is then approximated by

using the convolution quadrature with some special generating functions. The numerical

schemes obtained in this way are equivalent to the standard L1 scheme and modified L1

scheme, respectively. A Laplace transform method is used to prove the error estimates

for the homogeneous time fractional partial differential equation for both smooth and

nonsmooth data. Numerical examples are given to show that the numerical results are

121
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consistent with the theoretical results.

Here we consider the following time fractional partial differential equation, with 0 <

α < 1,

C
0 D

α
t u(t) + Au(t) = f(t), for 0 < t ≤ T, with u(0) = u0, (8.1.1)

where C
0 D

α
t u(t) denotes the Caputo fractional derivative defined by

C
0 D

α
t u(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds,

and u′(s) = ∂u
∂s

and A is a selfadjoint positive definite second order elliptic partial differen-

tial operator in Ω ⊂ Rd, d = 1, 2, 3, with D(A) = H1
0 (Ω) ∩H2(Ω), where H1

0 (Ω) ∩H2(Ω),

denotes the standard Sobolev spaces.

The equation (8.1.1) can be written as

R
0 D

α
t (u(t)− u(0)) + Au(t)) = f(t), 0 < t ≤ T, (8.1.2)

where

R
0 D

α
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αu(s)ds, (8.1.3)

denotes the Riemann-Liouville fractional derivative.

Our analysis will use Laplace transforms. The assumption that A is positive definite

implies that A generates an analytic semigroup, so that for some π
2
< θ0 < π and with

C = Cθ0 we have the resolvent estimate, see Lubich et al. [63], Thomee [93],

||(zI + A)−1|| ≤ C|z|−1, (8.1.4)

for z ∈
∑

θ0
= {z 6= 0 : |arg z| < θ0}.

In our analysis, we also need to choose θ > π
2

close to π
2

such that θ < θ0. Hence

zα ∈
∑

θ0
for any z ∈

∑
θ since 0 < α < 1 implies that arg(zα) = αθ < θ < θ0. Hence

there exists a constant C which depends only on θ and α such that, see Jin et al.[47, (2.3)]

or [46],

||(zαI + A)−1|| ≤ C|z|−α, (8.1.5)

for z ∈
∑

θ0
= {z 6= 0 : |arg z| < θ}.
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We also need to choose θ > π
2

close to π
2

such that zαk ∈
∑

θ0
for z ∈ Γ which implies

that (zαk I + A)−1exists where zk is defined in (8.3.21) and Γ = Γθ = {z : |arg z| = θ}.

Many application problems can be modeled by (8.1.1), for example, thermal-diffusion

in media with fractional geometry [74], highly heterogeneous aquifer [1], underground

environmental problems [39], random walks [38], [72], etc.

To solve (8.1.1) numerically one needs to approximate the time fractional deriva-

tive. There are three predominant approximations in the literature: finite difference

methods (including L1 schemes), [52], [56], the Grünwald-Letnikov methods, [100], [105],

Diethelm’s method [27], [35]. The L1 scheme is obtained by approximating the integer

derivative with the finite difference quotients in the definition of the fractional derivative.

The Grunwald-Letnikov method is based on the convolution quadrature and finally the

Diethelm’s method is based on the approximation of the Hadamard finite-part integral.

Let us briefly recall some main results in these three approximations to the time frac-

tional derivative in the literature. Langlands and Henry [52] considered the L1 scheme

for the Riemann-Liouville derivative and proved that the convergence order is O(k2−α) if

u ∈ C2[0, T ]. Lin and Xu [56] studied the L1 scheme for the Caputo fractional derivative

and proved that the convergence order is also O(k2−α) if u ∈ C2[0, T ], see also [87]. Gao,

Sun and Zhang [37] introduced a new L1-type formula and proved that the convergence

order is O(k3−α) if u ∈ C3[0, T ]. Li and Ding [54] obtained a finite difference method

with order O(k2) if R−∞D
3−α
t u ∈ L1(0, T ), see also [67]. Yuste and Acedo [100] considered

a Grünwald-Letnikov discretization of the Riemann-Liouville fractional derivative and

provided a von Neumann type stability analysis. Zeng et al. [105] introduced two fully

discrete schemes with convergence order O(k2−α) if u ∈ C2[0, T ] by using fractional linear

multistep method in time to approximate the convolution integral. Diethelm introduced

a finite difference scheme to approximate the Riemann-Liouville fractional derivative by

using the Hadamard finite-part integral and showed that the truncation error is O(k2−α)

if u ∈ C2[0, T ]. The scheme is obtained by Hadamard finite-part integral with linear

interpolation polynomials. This scheme is actually equivalent to the L1 scheme since the

weights of both schemes are the same, see below. Ford, Xiao and Yan applied Diethelm’s

method for solving the time fractional partial differential equation and proved the con-

vergence order is O(k2−α) if u ∈ C2[0, T ]. High order Diethelm schemes are also available
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in the literature, see [34], [35] [97].

However, the regularity of the solution of (8.1.1) is restrictive. For example, for the

homogenous equation with the initial data u0 ∈ L2(Ω). We have the following stability

estimate [79]

||C0 Dα
t u|| ≤ Ct−α||u0||,

where ||.|| denotes the L2 norm. That is, the αth order Caputo derivative is already

unbounded when t 7→ 0. Hence, the C2-regularity assumption generally does not hold

for (8.1.1) and the case of nonsmooth data is not covered by the existing error analysis.

Numerical experiments indicated that the O(k2−α) convergence rate actually does not

hold uniformly in t even for smooth data u0 [47]. The purpose of this work is to consider

error estimates for approximating (8.1.1) with nonsmooth data.

Jin et al. [47] presented an optimal O(k) convergence rate for the fully discrete scheme

based on the L1 scheme , i.e., (8.1.13)-(8.1.14) in time and Galerkin finite element method

in space for both smooth and nonsmooth data, i.e., u0 ∈ L2(Ω) and Au0 ∈ L2(Ω)(A = −∆

with a homogenous Dirichlet boundary condition), respectively. We will introduce a

modified L1 scheme (8.1.19)-(8.1.20) to discretize the time fractional derivative in (8.4.1)

and discretize the spatial derivative by using the Galerkin finite element method. We shall

prove the optimal convergence order O(k2−α) with nonsmooth data for such modified L1

scheme. Our estimates are derived by using the techniques developed in Lubich et al.

[63] for solving the intergo-differential equation. We will use some delicate estimates

for the kernel function which involves the polylogarithmic functions, see Jin et al [47].

To the best of our knowledge, there are no proofs of the convergence order O(k2−α) for

numerical methods for solving the time fractional partial differential equation (8.4.1) with

nonsmooth data in the literature.

The main contributions of this paper are as follows:

(1) we introduce the modified L1 scheme for solving time fractional partial differential

equation and prove that convergence order of this scheme is O(k2−α), 0 < α < 1 for both

smooth and nonsmooth data.

(2) we find the equivalence of the L1 scheme or modified L1 scheme with the convo-

lution quadrature formula for solving time fractional partial differential equations, i.e.,
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Lemmas 8.3.1, 8.3.4.

(3) we apply the Laplace transform approach of solving integro-differential equation

in Lubich et al [63] to solve time fractional partial differential equation (8.4.1).

With β(t) = tα−1/Γ(α), 0 < α < 1, the equation (8.1.2) can be written in the integral

form

u(t)− u0 +

∫ t

0

β(t− s)Au(s)ds =

∫ t

0

β(t− s)f(s)ds, (8.1.6)

with A(·, ·) denoting the bilinear form associated with A, and (·, ·) the inner product in

L2(Ω). The variational form of (8.1.6) is to find u(t) ∈ H1
0 (Ω) such that, for ∀ v ∈ H1

0 (Ω),

(u(t), v) +

∫ t

0

β(t− s)A(u(s), v)ds =

∫ t

0

β(t− s)(f(s), v)ds. (8.1.7)

We first consider the case of the discretization in space only. Let Sh denote the piecewise

linear functions on a triangulation of Ω of the standard type so that

infx∈sh{||u− χ||+ h||u− χ||1} ≤ Ch2||u||2,

where ||v||s = ||A s
2v|| for s ≥ 0.

The spatially discrete problem is then to find uh(t) ∈ Sh for 0 < t ≤ T such that, for

∀χ ∈ Sh,

(uh(t), χ)− (uh(0), χ) +

∫ t

0

β(t− s)A(uh(s), χ)ds =

∫ t

0

β(t− s)(f(s), χ)ds, (8.1.8)

uh(0) = u0h ≈ u0, (8.1.9)

where u0h ∈ Sh is some approximation of u0. Or in the abstract form,

uh(t)− u0h +

∫ t

0

β(t− s)Ahuh(s)ds =

∫ t

0

β(t− s)Phf(s)ds, (8.1.10)

where Ah : Sh 7→ Sh denotes the discrete Laplacian defined by

(Ahψ, χ) = A(ψ, χ), ∀ψ, χ ∈ Sh,

and Ph is the L2-projection onto Sh.

For this problem, we show that, in Theorem 8.2.2, if u0h = Phu0, then t > 0,

||uh(t)− u(t)|| ≤ Ch2(t−α||u0||+ t−α+1||f(0)||+
∫ t

0

(t− s)−α+1||ft(s)||ds). (8.1.11)
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We now turn to the discretization in time only. Let N ≥ 1 be a positive integer and

let 0 = t0 < t1 < t2 < · · · < tN = T be a partion of [0, T ] and k the time step size.

For the convolution integral in (8.1.6), we apply the following quadrature formula [63],

q0
n(ϕ) = kα

n∑
j=0

βn−jϕ
j ≈

∫ tn

0

β(tn − s)ϕ(s)ds.

Here, the weights βj, j = 0, 1, 2, · · · are determined by some special generating function

β̄(ζ) :=
∞∑
j=0

βjζ
j (8.1.12)

which we will define in Section 3.

It will prove convenient, however, to modify this formula slightly by omitting the term

with j = 0 so that [63],

qn(ϕ) = kα
n∑
j=1

βn−jϕ
j ≈

∫ tn

0

β(tn − s)ϕ(s)ds.

Let Un ≈ u(tn), n = 1, 2, · · · , N be the approximate solution of u(tn). We may define

the following time discretization problem for solving (8.1.6),

Un − U0 + qn(AU) = qn(f), n ≥ 1, (8.1.13)

U0 = u0. (8.1.14)

Let V n = Un − u0, then V n satisfies

V n + qn(AV ) = −qn(Au0) + qn(f), n ≥ 1, (8.1.15)

V 0 = 0. (8.1.16)

Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) =
∑∞

j=0 wjζ
j is defined in (8.3.2) below. Then

we prove, in Theorem 8.3.3 the following nonsmooth data error estimate of the equation

(8.1.6) with f = 0

||Un − u(tn)|| ≤ Ckt−1
n ||u0||. (8.1.17)

In order to achieve higher accuracy, we will use the following modification of qn(ϕ),

i.e., [63]

qcn(ϕ) = kα
( n∑
j=1

βn−jϕ
j + c0βn−1ϕ

0
)
, with c0 =

1

2
, (8.1.18)
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to approximate the integral
∫ tn

0
β(tn − s)ϕ(s)ds. We therefore define the following time

discretization problem for solving (8.1.6),

Un − U0 + qcn(AU) = qcn(f), n ≥ 1, (8.1.19)

U0 = u0. (8.1.20)

Let V n = Un − u0. Then V n satisfies

V n + qcn(AV ) = −qcn(Au0) + qcn(f), n ≥ 1, (8.1.21)

V 0 = 0. (8.1.22)

Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) =
∑∞

j=0wjζ
j is defined in (8.3.2) below. Then

we prove, in Theorem 8.3.6 the following nonsmooth data error estimate of the equation

(8.1.6) with f = 0

||Un − u(tn)|| ≤ Ck2−αtα−2
n ||u0||.

8.2 Finite Element Method

In this section, we will consider the finite element method for solving (8.1.6). We have

the following theorem:

Theorem 8.2.1. Assume that u(t) and uh(t) are the solutions of (8.1.6) and (8.1.10),

respectively. Assume that f = 0. Then we have

||uh(t)− u(t)|| ≤ Ch2t−α||u0||. (8.2.1)

Proof: The estimate (8.2.1) was first proved in Jin et al. [47] with a log factor. Later

the log factor was removed using the operator trick in Bazhlekova et al. [7]. The proof

in Bazhlekova et al. [7] is for the general inverse operator (g(z) +A)−1 in Ê(z) below. In

our case, we have g(z) = zα and we will prove the estimate (8.2.1) below by using the

argument in Lubich et al. [63] which is slightly simpler than the argument in Bazhlekova

et al. [7] .

Let û(z) be the Laplace transform of u(t). Taking the Laplace transform for (8.1.6),

we get

û(z)− u0z
−1 + β̂Aû(z) = 0.
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We have, noting that zα ∈
∑

θ by (8.1.5),

û(z) = (zI + z−α+1A)−1u0 = Ê(z)u0,

where Ê(z) = zα−1(zα + A)−1, By using the inverse Laplace transform, we have

u(t) =
1

2πi

∫
Γ

etzÊ(z)u0dz = E(t)u0,

where

Γ = Γθ = {z : |arg z| = θ},

for some θ > π
2

sufficiently close to π
2

such that (8.1.5) holds. Here

||Ê(z)|| = ||zα−1(zα + A)−1|| ≤ |z|
α−1

|z|α
≤ C|z|−1,

and Ê(z) is analytic for z ∈
∑

θ.

Similarly the solution of (8.1.10) has the form, with u0h = Phu0, f = 0,

uh(t) =
1

2πi

∫
Γ

etzÊh(z)u0hdz = Eh(t)Phu0,

where

Êh(z) = zα−1(zα + Ah)
−1.

Thus we have

||uh(t)− u(t)|| = ||Eh(t)Phu0 − E(t)u0||

=
∣∣∣∣∣∣ 1

2πi

∫
Γ

etz(Êh(z)Ph − Ê(z))u0dz
∣∣∣∣∣∣.

We will show that

||Êh(z)Ph − Ê(z)|| ≤ Ch2|z|α−1, z ∈ Γ. (8.2.2)

Assume this for the moment, we then have, with some constant c1 > 0,

||uh(t)− u(t)|| ≤ C

∫
Γ

|etz||h2|z|α−1|dz|||u0|| ≤ C

∫
Γ

e−c1t|z||h2|z|α−1|dz|||u0||

≤ C

∫ ∞
0

e−c1trh2rα−1dr||u0|| ≤ Ch2t−α
∫ ∞

0

e−xxα−1dx||u0|| ≤ Ch2t−α||u0||.
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It remains to show (8.2.2). Note that

||Êh(z)Ph − Ê(z)|| = zα−1
(
(zαI + Ah)

−1Ph − (zα + A)−1
)
.

With w = zα, we have

(wI + Ah)
−1Ph − (wI + A)−1

= Ph((wI + Ah)
−1 − (wI + A)−1)Ph − (I − Ph)(wI + A)−1)Ph − (wI + A)−1(I − Ph)

= I + II + III.

For I, we have

||I|| = ||Ph((wI + Ah)
−1 − (wI + A)−1)Ph|| ≤ ||A−1

h Ph − PhA−1||

= ||A−1
h Ph − A−1||+ ||(I − Ph)A−1|| ≤ Ch2.

For III, we have, by (8.1.5) and noting that A(w + A)−1 = I − w(w + A)−1,

|||III|| = ||(wI + A)−1(I − Ph)|| = ||(wI + A)−1AA−1(I − Ph)||

≤ C||A−1(I − Ph)|| ≤ Ch2.

For II, we have

||II|| = ||(I − Ph)(wI + A)−1)Ph|| ≤ Ch2.

Together these estimates complete the proof of Theorem 8.2.1.

Our next Theorem is the nonsmooth data error estimates for f 6= 0, u0 = 0.

Theorem 8.2.2. Assume that u(t) and uh(t) are the solutions of (8.1.6) and (8.1.10),

respectively. Assume that f 6= 0, u0 = 0. Then we have

||uh(t)− u(t)|| ≤ Ch2
(
t−α+1||f(0)||+

∫ t

0

(t− s)−α+1||f ′(s)||ds
)
, (8.2.3)

where f ′(s) = df(s)
ds

.

Proof. We first show that, with the sufficient smooth solution u(t) and uh(t),

uh(t) =

∫ t

0

Eh(t− s)Phf(s)ds,
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and

u(t) =

∫ t

0

E(t− s)f(s)ds,

where

Eh(t)Phu0 =
1

2πi

∫
Γ

etzÊh(z)Phu0dz,

and

E(t)u0 =
1

2πi

∫
Γ

etzÊ(z)u0 dz.

In fact, by taking the Laplace transform of (8.1.6), we have

û(z) + z−αAû(z) = z−αf̂(z),

which implies that

û(z) = (1 + z−αA)−1z−αf̂(z).

Denote Ê(z) = (1 + z−αA)−1z−α, we have

u(t) = (E ∗ f)(t) =

∫ t

0

E(t− s)f(s)ds.

With Jh(t) =
∫ t

0
Fh(s)ds, Fh(s) = Eh(s)Ph − E(s), we have

uh(t)− u(t) =

∫ t

0

(Eh(t− s)Ph − E(t− s))f(s)ds

=

∫ t

0

Fh(t− s)f(s)ds = Jh(t)f(0) +

∫ t

0

Jh(t− s)f ′(s)ds.

Thus we obtain

||uh(t)− u(t)|| ≤ ||Jh(t)f(0)||+
∫ t

0

||Jh(t− s)||||f ′(s)||ds.

Since the Laplace transform Ĵh(z) of Jh(t) is z−1F̂h(z), with F̂h(z) = Êh(z)Ph− Ê(z),

our results follows from, using (8.2.2),

||Jh(t)|| =
∣∣∣∣∣∣ 1

2πi

∫
Γ

etzĴh(z)dz
∣∣∣∣∣∣ = || 1

2πi

∫
Γ

etzz−1F̂h(z)dz||

≤ Ch2

∫
Γ

|z|α−2e−c1t|z||dz| ≤ Ch2t−α+1.

Together these estimates complete the proof of Theorem 8.2.2.
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8.3 Time Discretization

In this section we will consider the nonsmooth data error estimates of the time discretiza-

tion scheme for the equation (8.1.6) with f = 0.

At t = tn, n = 1, 2, · · ·N, we may use the following L1 scheme to approximate the

Caputo fractional derivative, see [47],

C
0 D

α
t u(tn) = k−α(b0u(tn) +

n−1∑
j=1

(bj − bj−1)u(tn−j)− bn−1u0) +O(k2−α),

where the weights bj are given by

bj = ((j + 1)1−α − j1−α)/Γ(2− α), j = 0, 1, 2 · · · , n− 1.

Rearranging the coefficients, we may write

C
0 D

α
t u(tn) = k−α

n∑
j=0

wj,nu(tn−j) +O(k2−α)

= k−α
n∑
j=0

wn−j,nu(tj) +O(k2−α), (8.3.1)

where wj,n, j = 0, 1, 2 · · · , n are given by

Γ(2− α)wj,n =


1, for j = 0,

−2j1−α + (j − 1)1−α + (j + 1)1−α, for, j = 1, 2, · · · , n− 1,

(j − 1)1−α − j1−α, for j = n.

We remark that the above weights wj,n, j = 0, 1, 2 · · · , n can also be obtained by using

Diethelm method [27]. In other words, the L1 scheme for approximating the Caputo frac-

tional derivative may be obtained by first approximating the Riemann-Liouville fractional

derivative by using Diethelm’s method [27] and then applying the relation between the

Riemann-Liouville and Caputo fractional derivatives, i.e., C0 D
α
t u(t) =R

0 Dα
t u(t) − u0) for

0 < α < 1.

For any fixed n ≥ 1, wj,n, j = 0, 1 · · · , n− 1 only depend on j = 0, 1, 2 · · · , n− 1. For

example, we have w0,n = 1/Γ(2 − α) for any n ≥ 1, w1,n = 1/Γ(2 − α)((−2)11−α + (1 −

1)1−α) + (1 + 1)1−α) for any n ≥ 2. Therefore, we may write w0 = w0,n, w1 = w1,n, w2 =

w2,n, · · · , wn−1 = wn−1,n for any n ≥ 1. For such defined wj, j = 0, 1, 2, · · · , we denote
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w̄(z) :=
∞∑
j=0

wjζ
j. (8.3.2)

Lemma 8.3.1. Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in (8.3.2).

Then the time discretization problem (8.1.15)-(8.1.16) is equivalent to the following L1

scheme, with f = 0,

k−α
n∑
j=0

wn−j,nV
j + AV n = −Au0, n ≥ 1, (8.3.3)

V 0 = 0, (8.3.4)

where the weights wn−j,n, j = 0, 1, 2, · · · , n are given by (8.3.1) and noting that wj =

wj,n, j = 0, 1, 2 · · · , n− 1 for all n ≥ 1.

Proof: The proof is similar to the proof of Lemma 8.3.4 below. We omit the proof

here.

Remark 7. Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in (8.3.2).

Then the time discretization problem (8.1.13)-(8.1.14) is equivalent to the following L1

scheme, with f = 0,

k−α
n∑
j=0

wn−j,nU
j + AUn = 0, n ≥ 1, (8.3.5)

U0 = u0, (8.3.6)

where the weights wn−j,n, j = 0, 1, 2, · · · , n are given by (8.3.1) and noting that wj =

wj,n, j = 0, 1, 2 · · · , n − 1 for all n ≥ 1. In fact, let V j = U j − u0, j = 0, 1, 2 · · · , n we

have, by (8.3.3)

k−α
n∑
j=0

wn−j,n(U j − u0) + AUn = 0, (8.3.7)

which implies (8.3.5) by noting the fact

n∑
j=0

wn−j,n = 0.

We then have the following theorem from Jin et al. [47].
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Theorem 8.3.2. Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in

(8.3.2). Let u(tn) and Un be the solutions of (8.1.6) and (8.1.13)-(8.1.14), respectively.

Let u0 ∈ L2(Ω) and f = 0. We have, with 0 < α < 1,

||u(tn)− Un|| ≤ Ckt−1
n ||u0||. (8.3.8)

Proof. By Remark 7 the time discretization problem (8.1.13)-(8.1.14) is equivalent to the

L1 scheme (8.3.3)-(8.3.4). Further we note that (8.3.3)-(8.3.4) is the same scheme as the

difference scheme [47, (2.8)] introduced in Jin et al. [47]. Hence (8.3.8) follows from Jin

et al. [47, Theorem 3.16].

We next consider the modified L1 scheme (8.1.21)-(8.1.22) with f = 0, that is,

V n + qcn(AV ) = −qcn(Au0), n ≥ 1, (8.3.9)

V 0 = 0. (8.3.10)

We have the following lemma.

Lemma 8.3.3. Assume that β̄(ζ) = w̄(ζ)−1, where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in

(8.3.2). Then the time discretization problem (8.3.9)-(8.3.10) is equivalent to, with c0 = 1
2
,

k−α
n∑
j=0

wn−j,nV
j + AV n = (−Au0)(1 + c0), for n = 1, (8.3.11)

k−α
n∑
j=0

wn−j,nV
j + AV n = (−Au0), for n ≥ 2, (8.3.12)

V 0 = 0. (8.3.13)

Proof. Denote

an =

 1 + c0, c0 = 1
2
, for n = 1,

1, for n ≥ 2.

The time discretization problem of (8.3.11)-(8.3.13) can then be written as

k−α
n∑
j=1

wn−j,nV
j + AV n = (−Au0)an.

Denote V̄ (ζ) =
∑∞

j=0 V
jζj, we have

∞∑
n=1

(
k−α

n∑
j=1

wn−j,nV
j
)
ζn +

∞∑
n=1

(AV n)ζn = (−Au0)
∞∑
n=1

(anζ
n).
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Note that

∞∑
n=1

( n∑
j=1

wn−j,nV
j
)
ζn =

( ∞∑
j=0

wjζ
j
)

(V 1ζ1 + V 2ζ2 + · · · ), (8.3.14)

where we only use the weights wj,n, j = 0, 1, 2 · · · , n−1 for n ≥ 1 and we do not use wn,n.

Hence we have

k−αw̄(ζ)V̄ (ζ) + AV̄ (ζ) = (−Au0)(
ζ

1− ζ
+ c0ζ).

Note that, by (8.1.12),

V̄ (ζ) + kαβ̄(ζ)AV̄ (ζ) = kαβ̄(ζ)(−Au0)(
ζ

1− ζ
+ c0ζ),

we have

∞∑
n=1

V nζn + kα
∞∑
j=1

( n∑
j=1

βn−jAV
j
)
ζn

= −kα
∞∑
n=1

(
n∑
j=1

βn−jAu0)ζn − kα
∞∑
n=1

(c0βn−1Au0)ζn,

which implies

V n + kα
n∑
j=1

βn−jAV
j = −kα

n∑
j=1

βn−jAu0 − kαc0βn−1Au0, n ≥ 1.

Thus we get (8.3.9)-(8.3.10).

Together these estimates complete the proof of Lemma 8.3.3.

Remark 8. Assume that β̄(ζ) = w̄(ζ)−1 where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in (8.3.2).

Then the time discretization problem (8.1.19)-(8.1.20) is equivalent to the following mod-

ified L1 scheme, with f = 0,

k−α
n∑
j=0

wn−j,nU
j + AUn = (−Au0)c0, for n = 1, (8.3.15)

k−α
n∑
j=0

wn−j,nU
j + AUn = 0, for n ≥ 2, (8.3.16)

U0 = u0, (8.3.17)

where the weights wn−j,n, j = 0, 1, 2 · · · , n are given by (8.3.1) and noting that wn−j,n, j =

0, 1, 2 · · · , n − 1 for all n ≥ 1, which follows by the substitution V j = U j − u0, j =

0, 1, 2 · · · , n in (8.3.11)-(8.3.13) and the equality
∑n

j=0 wn−j,n = 0.
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We are now ready to show our nonsmooth data error estimates of the modified L1

scheme for the homogeneous equation.

Theorem 8.3.4. Assume that β̄(ζ) = w̄(ζ)−1, where w̄(ζ) :=
∑∞

j=0wjζ
j is defined in

(8.3.2). Let u(tn) and Un be the solutions of (8.1.6) and (8.1.19)-(8.1.20), respectively.

Let u0 ∈ L2(Ω) and f = 0. We have, with 0 < α < 1,

||u(tn)− Un|| ≤ Ck2−αtα−2
n ||u0||.

To prove Theorem 8.3.4 , we need to show that zαk ∈
∑

θ0
for some θ0 ∈ (π/2, π) where

zk is defined in (8.3.21) below and θ0 is introduced in (8.1.4).

Lemma 8.3.5. [47, Lemma 3.7] Let θ > π/2 be close to π/2. Let z ∈ Γk with Γk = {z ∈

Γ : |=z| ≤ π/k} and Γ = {z : |arg z| = θ} (with =z running from −∞ to ∞). Let

zk = δ(ζ)
k
, ζ = ezk defined by (8.3.21). Then there exists θ0 ∈ (π/2, π) such that

zαk ∈
∑

θ0
, for all, z ∈

∑
θ .

Remark 9. In Lemma 8.3.5 in Jin et al [47], the authors proved that for all −π ≤ θ < π,

there exists θ0 ∈ (π/2, π), such that zαk ∈
∑

θ0
for all z ∈

∑
θ. Actually in our analysis,

we only need to show zαk ∈
∑

θ0
for all z ∈

∑
θ for some θ > π/2 close to π/2.

Proof of Theorem 8.3.4. Let V (t) = u(t)− u0 and V n = Un − u0. It suffices to show

||V (tn)− V n|| ≤ Ck2−αtα−2
n ||u0||,

which we will prove now. Note that, by (8.1.6),

V (t) +

∫ t

0

β(t− s)AV (s)ds = −
∫ t

0

β(t− s)Au0ds, (8.3.18)

V 0 = 0. (8.3.19)

Taking the Laplace transform in (8.3.18), we have,

V̂ (z) = −z−1(zα + A)−1Au0,

which implies that

V (t) = − 1

2πi

∫
Γ

eztz−1(zα + A)−1Au0dz. (8.3.20)
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Further we note that V n, n = 1, 2, 3 · · · satisfy (8.3.9)-(8.3.10) and therefore

∞∑
n=1

V nζn +
∞∑
n=1

qcn(AV )ζn = −
( ∞∑
n=1

qcn(1)ζn
)
Au0.

Denoting [63]

δ(ζ)−α = β̄(ζ),

we obtain

∞∑
n=1

qcn(AV )ζn =
∞∑
n=1

(kα
n∑
j=1

βn−j(AV
j) + c0k

αβn−1AV
0)ζn

=
∞∑
n=1

(
kα

n∑
j=1

βn−j(AV
j)
)
ζn =

(δ(ζ)

k

)−α
AV̄ (ζ),

and

∞∑
n=1

qcn(1)ζn =
∞∑
n=1

(
kα

n∑
j=1

βn−jζ
n + c0k

αβn−1ζ
n
)

=
(δ(ζ)

k

)−α
(ζ + ζ2 + ζ3 + · · · ) + c0k

α(β0ζ + β1ζ
2 + β2ζ

3 + · · · )

=
(δ(ζ)

k

)−α( ζ

1− ζ
+ c0ζ

)
.

Therefore we get

V̄ (ζ) +
(δ(ζ)

k

)−α
AV̄ (ζ) = −

(δ(ζ)

k

)−α( ζ

1 + ζ
+ c0ζ

)
.

Denote

zk =
δ(ζ)

k
. (8.3.21)

By Lemma 8.3.5 we see that (zαk + A)−1 exists and hence we have

V̄ (ζ) = −(zαk + A)−1(
ζ

1− ζ
+ c0ζ)Au0.

Hence we have

V n = − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( ζ

1− ζ
+ c0ζ)

(
zαk + A)−1Au0dζ

= − 1

2πi

∫
|ζ|=ρ

ζ−n−1
( ζ

1− ζ
+ c0ζ

)(δ(ζ)

k

)
z−1
k (zαk + A)−1Au0dζ.
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Let ζ = e−zk, z = 1
k
log1

ρ
+ i(− θ

k
)|θ| ≤ π, we have

V n = − 1

2πi

∫
Γk

etnz(
ζ

1− ζ
+ c0ζ)δ(ζ)z−1

k (zαk + A)−1Au0dz,

where Γk = {z ∈ Γ : |=z| ≤ π/k}. For the details of the notation Γk, see the proof of

Lemma 8.3.2 in [47].

Denoting

µ2(ζ) =
( ζ

1− ζ
+ c0ζ

)
δ(ζ), (8.3.22)

we obtain

V n = − 1

2πi

∫
Γk

etnzµ2(ζ)z−1
k (zαk + A)−1Au0dz. (8.3.23)

Thus we have, subtracting (8.3.20) from (8.3.23),

V (tn)− V n =
1

2πi

∫
Γk

etnz
(
µ2(ζ)z−1

k (zαk + A)−1 − z−1(zα + A)−1
)
Au0dz

+
1

2πi

∫
Γk/Γk

etnzz−1(zα + A)−1Au0dz

= I + II.

Denote

k̂(z) = z−1(zα + A)−1A. (8.3.24)

For I, we have, with some suitable constant c̄0 > 0,

||I|| ≤ 1

2π

∫
Γk

|etnz|||µ2(ζ)k̂(zk)− k̂(z)||||u0|||dz|

≤ 1

2π

∫
Γk

|etnz|C(k2−α|z|1−α)||u0|||dz|

≤ Ck2−α
∫ ∞

0

e−c̄0tnr(tnr)
1−αd(rtn)tα−1

n t−1
n ||u0||

≤ Ck2−αtα−2
n ||u0|| ≤ Ck2−αtα−2

n ||u0||.

For II, we have by (8.1.5) and noting that (zα + A)−1A = I − zα(zα + A)−1, with some

suitable constant c̄0 > 0,

||II|| ≤ 1

2π

∫
Γ/Γk

|etnz|||u0||||z−1(zα + A)−1A||u0|||dz|||u0|| ≤ C

∫ ∞
1
k

e−c̄0tn|z||z|−1|dz|||u0||

≤ C

∫ ∞
1
k

e−c̄0tn|z||z|−(2−α)|z|−α+1|dz|||u0|| ≤ Ck2−α
∫ ∞

1
k

e−c̄0tn|z||z|1−α|dz|||u0||

≤ Ck2−αtα−2
n

∫ ∞
0

e−c̄0rr−α+1 dr||u0|| ≤ Ck2−αtα−2
n ||u0||.
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The proof of Theorem 8.3.4 is now complete.

We close this section by introducing some lemmas which we need in the proof of

Theorem 8.3.4.

Lemma 8.3.6. We have the following singularity expansion, with ζ = e−zk,

∞∑
j=0

wjζ
j = (zk)α + c2(zk)2 + c3(zk)3 + · · · ,

for some suitable constants c2, c3 · · ·

We also need to introduce the polylogorithm function

Lip(z) =
∞∑
j=1

zj
jp
.

The polynomial function Lip(z) is well defined for |z| < 1 and p ∈ C. It can be analytically

continued to the split complex plane C/[1,+∞); see Flajolet [36]. With z = 1, it recovers

the Riemann zeta function ς(p) = Lip(1). We also recall an important singular expansion

of the function Lip(e
−z) (Flajolet [36, Theorem 1]).

Lemma 8.3.7. [47, Lemma 3.2] For p 6= 1, 2, · · · the function Lip(e
−z) satisfies the

singluar expansion

Lip(e
−z) ∼ Γ(I − p)zp−1 +

∞∑
l=0

(−1)lς(p− I)
zl

l
, as z → 0,

where ς(z) denotes the Riemann zeta function.

Lemma 8.3.8. [47, Lemma 3.4], Let |z| ≤ π
sin θ

with θ ∈ (π
2
, 5π

6
) and −1 < p < 0. Then

Lip(e
−z) = Γ(1− p)zp−1 +

∞∑
l=0

(−1)lς(p− I)
zl

l

converges absolutely.

Proof of Lemma 8.3.6. We have, by the definition of w̄(z) in (8.3.2) with ζ = e−zk,

w̄(z) =
∞∑
j=0

wjζ
j =

1

Γ(2− α)
(ζ−1 − 2 + ζ)

( ∞∑
j=0

j1−αζj
)

=
1

Γ(2− α)

(
(e−zk)−1 − 2 + e−zk

)( ∞∑
j=1

j1−αζj
)

=
1

Γ(2− α)

(
(e−zk)−1 − 2 + e−zk

)
Liα−1(ζ),
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where Liα−1(ζ) denotes the polylogarithm function. We then have, by Lemma 8.3.8,

Liα−1(ζ) = Liα−1(e−zk) = Γ(2− α)(zk)α−2 +
∞∑
l=0

(−1)lς(1− α− l)(zk)l

l
,

where ς(z) denotes the Riemann zeta function.

Hence, with some suitable constants c2, d0, d1 · · · ,

w̄(z) =
(

(zk)2 +
1

12
(zk)4 + · · ·

)(
(zk)α−2 + d0(zk)0 + d1(zk)1 + · · ·

)
,

= (zk)α + c2(zk)2 + · · ·

Together these estimates complete the proof of Lemma 8.3.6.

Lemma 8.3.9. Let ζ = e−zk and z ∈ Γk. Let µ2(ζ), zk and k̂(z) be defined as in (8.3.22),

(8.3.21), (8.3.24), respectively. We have

µ2(e−zk)− 1 = O((zk)2−α), as zk → 0, (8.3.25)

c|z| ≤ |zk| ≤ C|z|, (8.3.26)

||k̄(zk)− k̄(z)|| ≤ Ck2−α|z|−α+1, (8.3.27)

||µ2(ζ)k̄(zk)− k̄(z)|| ≤ Ck2−α|z|1−α. (8.3.28)

Proof. We first show (8.3.25). It is sufficient to show

|µ2(e−w)− 1| = O(w2−α), as w → 0. (8.3.29)

Note that, by Lemma 8.3.6,

µ2(e−w)− 1 =
( e−w

1− e−w
+ c0e

−w
)( ∞∑

j=0

wj(e
−w)j

) 1
α − 1

=
( e−w

1− e−w
+ c0e

−w
)(
wα + c2w

2 + c3w
3 + · · ·

) 1
α − 1

= (e−w + c0e
−w(1− e−w))(

w

1− e−w
)
(

1 + c2w
2−α + c3w

3−α + · · ·
) 1
α − 1

= (e−w + c0e
−w(1− e−w))(

w

1− e−w
)(1 + c2w

2−α + · · · )
1
α − 1

= f1(w)f2(w)f3(w)− 1,

where f1(w) = e−w + c0e
−w(1− e−w), f2(w) = w

1−e−w and f3(w) = 1 + c2w
2−α + · · · and

where c2, c3 · · · denote generic constants, which may differ at different occurrences. Thus
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we get

lim
w 7→0

µ2(e−w)− 1

w2−α = lim
w 7→0

F (w) + f1(w)f2(w)f ′3(w)

(2− α)w1−α

= lim
w 7→0

F (w) + f1(w)f2(w)(c2w
1−α + · · · )

(2− α)w1−α ,

where

F (w) = f ′1(w)f2(w)f3(w) + f1(w)f ′2(w)f3(w)

= (e−w(−1) + c0e
−w(−1)(1− e−w) + c0e

−we−w)f2(w)f3(w)

+ (e−w + c0e
−w(1− e−w))

((1− e−w)− we−w

(1− e−w)2

)
f3(w).

With c0 = 1/2, it is easy to see that F (w) = O(w), w → 0. Further we have limw→0 f1(w)f2(w) =

C. Thus the following limit exists

lim
w→0

µ2(e−w)− 1

w2−α = lim
w→0

F (w) + f1(w)f2(w)(c2w
1−α + · · · )

(2− α)w1−α ,

which shows (8.3.29).

Next we show (8.3.26). Note that

|z|
|zk|

=
|z|

| δ(e−zk)
k
|

=
|zk|
|δ(e−zk)|

.

To show (8.3.26) it suffices to prove |zk|
|δ(e−zk)| has limit as |zk| → 0, which follows form

lim
w→0

w

δ(e−w)
= lim

w→0

w

(
∑∞

j=0wj(e
−w)j)

1
α

= lim
w→0

w

(wα + c2w2 + · · · ) 1
α

(8.3.30)

= lim
w→0

1

(1 + c2w2−α + · · · ) 1
α

= 1.

Hence we have proved, for any fixed constant M > 0, there exists a constant C such that

|z|
|zk|
≤ C, ∀|zk| ≤M.

Similarly we may show |z|
|zk|
≤ C, ∀|zk| ≤ M . Thus we get (8.3.26). We now show

(8.3.27). Note that

zk − z =
δ(e−zk)

k
− z =

δ(e−zk)− zk
k

=
(
∑∞

j=0wj(e
−zk)j)

1
α − zk

k

=
(zk)α + c2z

2k2 + · · · ) 1
α − zk

k
=

(zk)(1 + c2(zk)2−α + · · · ) 1
α − zk

k

=
(zk)(1 + c2

α
(zk)2−α + · · · )− zk

k
= O(k2−αz3−α), as kz → 0.
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Thus we have, following the proof [63, (4.6)] and noting ||k̂′(z)|| ≤ C|z|−2 in [63, (3.12)]

||k̂(zk)− k̂(z)|| ≤ C|z|−2k2−α|z|3−α = Ck2−α|z|1−α

Finally we show (8.3.28). Following the same proof as in the proof of [63, (4.3)], we have

||µ2(ζ)k̂(zk)− k̂(z)|| ≤ ||(µ2(ζ)− 1)k̂(zk)||+ ||k̂(zk)− k̂(z)||

≤ |zk|2−αC|z|−1 + k2−α|z|1−α ≤ Ck2−α|z|1−α.

Together these estimates complete the proof of Lemma 8.3.9.

Remark 10. We remark that assuming that u0 ∈ D(A) rather than u0 ∈ L2(Ω) reduces

the singular behavior of the error bound at t = 0 . We can prove the convergence order

O(k2−α), 0 < α < 1 similarly, see Lubich et al. [63].

8.4 Numerical Simulations

In this section, we will consider the convergence rates of the numerical methods with both

smooth and nonsmooth data for the following homogeneous problem. Consider

C
0 D

α
t u(x, t)− uxx = 0, 0 < x ≤ 1, t > 0, (8.4.1)

u(0, t) = u(1, t) = 0, (8.4.2)

u(x, 0) = u0(x), (8.4.3)

where u0(x) = x(1− x) or u0(x) = χ(0,1/2).

Let 0 < t0 < t1 < t2 < · · · < tN = T be the time partition and k the time step

size. Let Nh be a positive integer. Let 0 = x0 < x1 < x2 < · · · < xNh = 1 be the space

partition and h the space step size. We will use finite element method to consider the

spatial discretization.

We first consider the scheme (8.1.13)-(8.1.14) and the convergence rate was proved to

be O(k) for both smooth and nonsmooth data in [47].

To observe this convergence order, we first calculate the reference solution uref (t) at

T = 1 with href = 2−6 and kref = 2−10. We then use h = 2−6 and k = kappa ∗ kref with

kappa = [22, 23, 24, 25, 26] to obtain the approximate solutions u(t) at t = 1. We choose
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α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate

0.1 (a) 0.02212e-4 0.0496e-4 0.1067e-4 0.2218e-4 0.4564e-4 1.1063

(b) 0.0055e-3 0.0127e-3 0.0274e-3 0.0570e-3 0.1172e-3 1.1063

0.3 (a) 0.0056e-3 0.0130e-3 0.0280e-3 0.0585e-3 0.1209e-3 1.1100

(b) 0.0143e-3 0.0333e-3 9 0.0718e-3 0.1479e-3 0.3094e-3 1.1099

0.8 (a) 0.0078e-3 0.0185e-3 0.0403e-3 0.0857e-3 0.1824e-3 1.1359

(b) 0.0198e-3 0.0466e-3 0.1017e-3 0.2160e-3 0.4595e-3 1.1350

0.9 (a) 0.0054e-3 0.0128e-3 0.0284e-3 0.0621e-3 0.1404e-3 1.1766

(b) 0.0134e-3 0.0320e-3 0.0708e-3 0.1546e-3 0.3490e-3 1.1757

Table 8.4.1: Time convergence orders with the different α for the L1 scheme

the smooth and nonsmooth initial data (a) u0(x) = x(1−x) and the nonsmooth data (b)

u0(x) = χ(0,1/2) we obtain the following results in Table 8.4.1, which are consistent with

the Table 8.4.1 in [47]. The convergence order indeed is almost O(k) for the different

α ∈ (0, 1) in both smooth and nonsmooth data cases.

We next consider the modified L1 scheme (8.1.19)-(8.1.20) and the convergence rate

is O(k2−α) for both smooth and nonsmooth data.

To observe this convergence order, we first calculate the reference solution uref (t) at

T = 1 with href = 2−6 and kref = 2−10, We then use h = 2−6 and kappa = [22, 23, 24, 25, 26]

to obtain the approximate solutions u(t) at t = 1. We choose the smooth and nonsmooth

initial data (a) u0 = x(1 − x) and the nonsmooth data (b) u0 = χ(0,1/2) we obtain the

following results in Table 8.4.2.

We found that the modified L1 scheme has the better accuracy than L1 scheme and

the errors are about 1e− 05 or 1e− 04 for all α ∈ (0, 1). The error of the L1 scheme are

only 1e− 03.
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α k = 2−8 k = 2−7 k = 2−6 k = 2−5 k = 2−4 Rate

0.1 (a) 0.0007e-5 0.0030e-5 0.0125e-5 0.0517e-5 0.2197e-5 2.0674

(b) 0.0018e-5 0.0078e-5 0.0322e-5 0.1333e-5 0.5658e-5 2.0668

0.3 (a) 0.0013e-5 0.00064e-5 0.0291e-5 0.1302e-5 0.5891e-5 2.1914

(b) 0.0004e-4 0.00017e-4 9 0.0076e-4 0.0339e-4 0.1527e-4 2.1839

0.8 (a) 0.0079e-4 0.0201e-4 0.0462e-4 0.0981e-4 0.1782e-4 1.1223

(b) 0.0196e-4 0.0496e-4 0.1140e-4 0.2421e-4 0.4407e-4 1.1230

0.9 (a) 0.0141e-4 0.0345e- 4 0.0778e-4 0.1687e-4 0.3848e-4 1.1573

(b) 0.0347e-4 0.0851e-4 0.1920e-4 0.4162e-4 0.8597e-4 1.1572

Table 8.4.2: Time convergence orders with the different α for the L1 scheme



Chapter 9

Conclusions and Forthcoming

Research

This thesis mainly consists of four papers which have been published in the peer refereed

international journals. In Chapter 5, we consider the Fourier spectral methods for solving

some linear stochastic space fractional partial differential equations perturbed by space-

time white noises. The space fractional derivative is defined by using the eigenvalues and

eigenfunctions of Laplacian subject to some boundary conditions. We approximate the

space-time white noise by using piecewise constant functions and obtain the approximated

stochastic space fractional partial differential equations. The approximated stochastic

space fractional partial differential equations are then solved by using Fourier spectral

methods.

In Chapter 6, we consider the Fourier spectral methods for solving stochastic space frac-

tional partial differential equation driven by special additive noises. The space fractional

derivative is defined by using the eigenvalues and eigenfunctions of Laplacian subject

to some boundary conditions. The space-time noise is approximated by the piecewise

constant functions in the time direction and by appropriate approximations in the space

direction. The approximated stochastic space fractional partial differential equations is

then solved by using Fourier spectral methods.
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In Chapter 7, we consider the discontinuous Galerkin time stepping methods for solving

the linear space fractional partial differential equations. The space fractional derivatives

are defined by using Riesz fractional derivative. The space variable is discretized by

means of a Galerkin finite element method and the time variable is discretized by the

discontinous Galerkin method. The approximate solution will be sought as a piecewise

polynomial function in t of degree at most q−1, q ≥ 1, which is not necessarily continuous

at the nodes of the defining partition. The error estimates in the fully discrete case are

obtained and the numerical examples are given.

Finally, in Chapter 8, we consider error estimates for the modified L1 scheme for solving

time fractional partial differential equation. Jin et al. (2016, An analysis of the L1

scheme for the subdiffifusion equation with nonsmooth data, IMA J. of Number. Anal.,

36, 197-221) established the O(k) convergence rate for the L1 scheme for booth smooth

and nonsmooth initial data. We introduce a modified L1 scheme and prove that the

convergence rate is O(k2−α), 0 < α < 1 for both smooth and nonsmooth initial data.

We first write the time fractional partial differential equations as a Volterra integral

equation which is then approximated by using the convolution quadrature with some

special generating functions. A Laplace transform method is used to prove the error

estimates for the homogeneous time fractional partial differential equation for both smooth

and nonsmooth data. Numerical examples are given to show that the numerical results

are consistent with the theoretical results.

The importance of research into stochastic space fractional differential equations, time

fractional differential equation and their significance to future applications warrants the

continued study. We propose some possible research topics in this active research area:

� Spectral method for solving stochastic space fractional PDEs with some special

space-time noise.

� Finite element method for solving stochastic space fractional PDEs.

� Stochastic space fractional PDEs with multiplication noise.
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