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Abstract

The initial research presented in this thesis is the structure of the unit group of the group ring
C), X Dg over a field of characteristic 3 in terms of cyclic groups, specifically U(Fs:(C,, X Dg)). There
are numerous applications of group rings, such as topology, geometry and algebraic K-theory, but
more recently in coding theory. Following the initial work on establishing the unit group of a group
ring, we take a closer look at the use of group rings in algebraic coding theory in order to construct
self-dual and extremal self-dual codes.

Using a well established isomorphism between a group ring and a ring of matrices, we construct
certain self-dual and formally self-dual codes over a finite commutative Frobenius ring. There is an
interesting relationships between the Automorphism group of the code produced and the underlying
group in the group ring. Building on the theory, we describe all possible group algebras that can
be used to construct the well-known binary extended Golay code.

The double circulant construction is a well-known technique for constructing self-dual codes; com-
bining this with the established isomorphism previously mentioned, we demonstrate a new technique
for constructing self-dual codes. New theory states that under certain conditions, these self-dual
codes correspond to unitary units in group rings. Currently, using methods discussed, we construct
10 new extremal self-dual codes of length 68.

In the search for new extremal self-dual codes, we establish a new technique which considers a
double bordered construction. There are certain conditions where this new technique will produce
self-dual codes, which are given in the theoretical results. Applying this new construction, we con-
struct numerous new codes to verify the theoretical results; 1 new extremal self-dual code of length
64, 18 new codes of length 68 and 12 new extremal self-dual codes of length 80.

Using the well established isomorphism and the common four block construction, we consider a new
technique in order to construct self-dual codes of length 68. There are certain conditions, stated in
the theoretical results, which allow this construction to yield self-dual codes, and some interesting
links between the group ring elements and the construction. From this technique, we construct 32
new extremal self-dual codes of length 68.

Lastly, we consider a unique construction as a combination of block circulant matrices and quadratic

circulant matrices. Here, we provide theory surrounding this construction and conditions for full

effectiveness of the method. Finally, we present the 52 new self-dual codes that result from this
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method; 1 new self-dual code of length 66 and 51 new self-dual codes of length 68. Note that
different weight enumerators are dependant on different values of 5. In addition, for codes of length
68, the weight enumerator is also defined in terms of 7, and for codes of length 80, the weight
enumerator is also defined in terms of a.

To highlight and summarise the new codes constructed in this thesis, a comprehensive list is shown
below:

e Code of length 64: We were able to construct the following [64,32,12] codes with new
weight enumerator in Wy o:

8= {57}.

e Code of length 66: We were able to construct the following extremal binary self-dual codes
with new weight enumerators in W 3:

g ={21}.

e Codes of length 68: We were able to construct the following extremal binary self-dual codes
with new weight enumerators in Wg o:

B = {208,214, 218}),

B = {179,191, 193, 195, 197, 199, 202, 210, 211, 229}),

B ={61,161,163,169,171,173,191,193, 195, 199, 204, 218}),

B = {163,175,177}),

B = {126,129, 132,144, 145, 146, 148, 155, 157, 161, 159, 175, 186, 191, 200}),

B = {182,187,189, 191, 193}),

B ={131,134,135}),

B = {142,144, 145, 146, 148, 150, 152, 155, 156, 157, 158, 159, 160, 162, 164, 165, 167})

B = {153,154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168,169, 170,171,172, 173,174,175, 176,177,178, 179}).

9, B={169,171,173,174,175,176,177,178,179, 180, 181, 182, 183, 184, 185}).
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e Codes of length 80: We were able to construct the following [80, 40, 14] codes with new
weight enumerators in Wy o:

(B=18, a={-211,-229,—249, —256, —274, —287, —306, —310, —325, —355, —363, —4011}).
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Chapter 1

Introduction

This thesis is comprised of eight chapters in total. Firstly, we discuss the preliminaries required
to understanding group rings and codes. The remaining six chapters consist of six pieces of work
either submitted or accepted for publication, the details of which are outlined below.

Chapter 1: In the initial chapter, we present the definitions and theorems required as a basis to
fully understanding subsequent chapters. Numerous theorems and definitions are given which we
will refer back to throughout this thesis.

Chapter 2: In the second chapter, we establish the structure of the unit group of C), x Dg over any
finite field of characteristic 3 where C), is the cyclic group of order n and Dg is the dihedral group
of order 6. This first piece of work was published in 2018, as joint work with my PhD supervisor,
[46]. T made a considerable contribution to the theorems and proof presented in this paper, with
the guidance of Joe Gildea. The focus of this chapter is group rings; in subsequent chapters, we
explore a useful application of group rings in coding theory.

Chapter 3: Here, we describe codes that are ideals in a group ring called G-codes, where the ring
is a finite commutative Frobenius ring and G is an arbitrary finite group. Notably, we prove that
the dual of a G-code is also a G-code. We extend some theory on the construction of self-dual and
formally self-dual codes and prove that our constructed codes must have an automorphism group
that contains GG as a subgroup. This theory is joint work with the help of Stephen Doughterty.
We look at some common construction techniques for producing self-dual codes and prove that a
certain method cannot produce the putative [72,36,16] Type II code. Additionally, we show pre-
cisely which groups can be used to construct the extremal Type II codes of length 24. My main
contribution to this paper included constructing the extended binary Golay code from certain ideals
in group rings. The results presented in this chapter were published in 2018, as joint work with
Stephen Dougherty, Alexander Tylyshchak and my PhD supervisor, Joe Gildea, [26].

Chapter 4: In this chapter, I worked with Abidin Kaya and Bahattin Yildiz, along with Joe
Gildea. Here, we focus on establishing a stronger connection between group rings and self-dual
codes, proving that a group ring element corresponds to a self-dual code if and only if it is a unitary
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unit. Looking closer into the well-known double-circulant and four-circulant constructions, we show
that the structures correspond to cyclic and dihedral groups, respectively. Using groups of order
8 and 16, we can see new methods for constructing self-dual codes, in addition to more familiar
methods. The usefulness of these new construction methods are verified by the discovery of 10
new extremal binary self-dual codes of length 68, which were published in 2018, [44]. My main
contribution to this paper includes the construction of self-dual codes coming from groups of order
8 and 16.

Chapter 5: As joint work with Abidin Kaya, Alexander Tylyshchak and Joe Gildea, we present
a double bordered construction of self-dual codes from group rings. This is an extension of the
well-established double circulant construction whose extensive use has had frequent results. The
effectiveness of the new double bordered construction is proven for groups of order 2p where p is
odd, over the rings Fo + ulFy and Fy 4+ ulFy. Numerous new codes of length 64, 68 and 80, and their
corresponding weight enumerators, are presented throughout the paper. In this chapter, I con-
tributed significantly to the construction itself, as well as the following calculations and submitting
the paper to Cryptography and Communications. The results from this chapter were published in
2020, [47].

Chapter 6: Continuing in the construction of self-dual codes, and working with the same authors
as the previous chapter, we consider extending known construction methods. Here, we present a
unique combination of 2 x 2 block circulant matrices, group rings and a reverse circulant matrix.
There are certain conditions, proven in this chapter, for when this construction produces self-dual
codes. After presenting the theory, we construct self-dual codes of various lengths over Fy, Fy + ulFy
and Fy + ulFy. My contribution to this chapter includes the construction itself, the main theory
with the guidance of Alexander Tylyshchak, and the numerical results with the help of Abidin
Kaya. In the search for new self-dual codes of length 68, using groups of order 4, 8 and 17, we use
known methods for extensions, ”neighbours of codes”, and we extend this to so-called neighbours of
neighbours. This results in the construction of 32 new self-dual codes which have been submitted
for publication ([41]).

Chapter 7: Following the success of previous chapters, in constructing self-dual codes extending
known construction methods, we consider combining block circulant matrices and block quadratic
residue circulant matrices. Along with the authors from the previous chapter, and the addition of
Bahattin Yildiz, we provide conditions for when this unique construction can yield self-dual codes.
To verify the importance of this theory, we construct self-dual codes of various lengths over Fy and
Fy + ulF5. Again, we use extensions, neighbours and sequences of neighbours, in order to construct
many new self-dual codes. My contribution to this paper includes the construction, theorems 7.1.1-
7.2.2 and corresponding proofs. The numerical results were obtained collaboratively. Notably, we
construct one new self-dual code of length 66 and 51 new self-dual codes of length 68. The theory
and results presented in this chapter have been submitted for publication, ([42]).

Chapter 8: The final chapter is a conclusion of the work presented, the importance of the results
and suggestions for future work. Here, we look back on the achievements of the project and criti-
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cally examine what could have been done differently.

1.1 Group Rings
We now provide many definitions and results regarding group rings needed for Chapter 2.
Definition 1.1.1 ([90]) Let R be a ring and let G be a group, then the group ring RG of G over

R is given as:
RG = {Zaggmg GR}

geG

We define the sum of two elements in RG componentwise:

(S]] = ()

Additionally, given two elements o = (deG agg> and B = (3,cc buh), we define their product

aff = Z agbrgh.

g,heG

Definition 1.1.2 ([90]) Let RG be the group ring of the group G over the ring R. The homomor-

phism € : RG — R given by
€ (Z agg) = Z ay

geG

is called the augmentation mapping of RG.
Definition 1.1.3 ([90]) Let RG be the group ring of the group G over the ring R. Then, we define
V(RG) = {u e U(RG) |e(u) = 1}
as the normalized units of RG.
Theorem 1.1.4 ([89]) Let RG be the group ring of the group G over the ring R. Then,
U(RG) ZU(R) x V(RG)

where V(RG) are the normalized units of RG.

In order to present the following two important theorems, we need to define a semisimple ring.

Definition 1.1.5 ([16]) A ring R is called left semisimple if it is a direct sum of minimal left ideals.
Similarly, a ring R is called right semisimple if it is a direct sum of minimal right ideals.
3



Theorem 1.1.6 (Wedderburn-Artin Theorem) ([90]) R is a semisimple ring if and only if R
can be decomposed as a direct sum of finitely many matriz rings over division rings. i.e.

R = Mm(Dl) S MnQ(D2) DD Mns(DS)
where D; is a division ring and M, (D;) is the ring of n; X n; matrices over D;.

Theorem 1.1.7 (Maschke’s Theorem)(]90]) Let G be a group and R be a ring. Then RG is
semisimple if the following conditions hold:

1. R is semisimple
2. G is finite
3. |G| is invertible in R.

Corollary 1.1.8 ([90]) Let G be a group and K be a field. Then KG is semisimple if and only if
G is finite and the char(K) 1 |G|.

Theorem 1.1.9 ([90]) Let G be a finite group and K be a finite field such that char(K) { |G|. Then
KG = @;_M,,(D;) where D; is a division ring containing K in its center and

Gl =) (0} - dimy(D,))

i=1

Definition 1.1.10 ([90]) A field K is algebraically closed if it contains all of the roots of the
polynomials in Klx].

Corollary 1.1.11 ([90]) Let G be a finite group and K be an algebraically closed field, where
char(K) 1|G|. Then,

2
KG=®_ M, (K) and |G|=) n]
=1

Theorem 1.1.12 ([90]) Let G be a finite group and K be a field such that char(K) t|G|. Then
KG = ©; M, (D;) = K © &2 M,,(D;)
i.e. the field itself appears at least once as a direct sum in the Wedderburn-Artin decomposition.
Lemma 1.1.13 ([90]) Let K be a finite field. Then if char(K) 1 |G| < oo, then
KG = @i M, (K,

where K; are fields.



Theorem 1.1.14 ([90]) Let G be an abelian group of order n and K a field such that char(K) 1 n.
If K contains a primitive root of unity of order n then

KG=Z=K®- -9 K.
—_—

n

We now introduce a ring isomorphism from RG to a subring of M,(R). This isomorphism was
constructed by Hurley in [60]. We begin by providing the details required to understand the
implementation of this isomorphism. Given a particular element of a group ring, we can use this
isomorphism to identify whether or not it is a unit or zero divisor.

We will now provide the necessary details. Given the elements of a group G, consider a fixed listing
G ={91,92,---,9n}. Consider the following matrix of G, denoted M (G) relative to its listing.

91‘191 91‘192 gfigs gfign
92 91 9o 92 G2 93 --- Gz Gn
ator 9,'92 9 tes oo 90w

In the matrix M (G), every row and every column contains the elements of G in some order. Now,
let w=>"" a,9; € RG. Then M(RG,w) can be defined as

Qgrlgr Xgrlgy Xgrlgs Xgrlgn
Qgrtgr Ygylge gilgs Qg tgn
agﬁ tg1 agﬁ go agﬁ lgs O‘gﬁ Lgn

Theorem 1.1.15 ([60]) Given a listing of the elements of a group G of order n, there is a bijective
ring homomorphism between RG and the n X n G-matrices over R. This bijective ring homomor-
phism is given by o : w— M(RG,w).

The next three results provide conditions when a group ring element is a unit or a zero divisor.

Theorem 1.1.16 ([60]) Suppose R has an identity. Then w € RG is a unit in RG if and only if
o(w) is a unit in Ryxn,.

Corollary 1.1.17 ([60]) When R is commutative, w is a unit in RG if and only if o(w) is a unit
in Ryxn if and only if det(o(w)) is a unit in R.

Corollary 1.1.18 ([60]) w is a zero divisor in RG if and only if o(w) is a zero divisor in Ry x.,.

Note that cir(ay, as,...,a,) denotes a circulant matrix whose first row is (ag, as, ..., a,), each row
vector is rotated one element to the right relative to the preceding row vector. The notation
reir(ay, as, . . ., a,) denotes a reverse circulant matrix, where each row vector is rotated one element

to the left. Furthermore, CIR(A;, As, ..., A,) denotes a block circulant matrix whose first row of
block matrices are Ay, As, ..., A,.
5



1.2 Codes and Alphabets

Throughout this thesis (Chapter’s 3-7), we construct codes over finite commutative Frobenius rings.
First, we shall define a Frobenius ring. We will then define a code over such rings and provide many
properties/results regarding codes needed for later chapters.

Definition 1.2.1 ([8]) Suppose that R is a ring with identity. A left R-module M consists of an
abelian group (M, +) and an operation - : R x M — M such that:

er-(x+y)=r-cv+r-y,
o (r+s)-x=r-x+s-zx,
e (rs)-x=r-(s-z) and
o l-z=2x
forall x,y € M and r,s € R.

Definition 1.2.2 ([8]) Let M and N be left modules over a ring R. Then, the function f: M — N
15 called an R-module homomorphism if:

o flr+y)=f(x)+ fy) for all x,y € M and
o f(rx)=rf(x) forallr € R and x € M

The set of all module homomorphisms from M to N is denoted by Homgr(M, N). A left R-module
15 denoted g R, and a right R-module is denoted Rpg.

Definition 1.2.3 ([96]) Let R be a finite ring. Then R = Homg(R,C*) is called the character
module of R.

Definition 1.2.4 ([24]) A finite ring is called Frobenius if:
o As a left module, R rR.
e As a right module, R = Rg.

Definition 1.2.5 ([24]) A code over R of length n is a subset of R™. If the code is a submodule
of R", then we say that the code is a linear code. If a code is a k-dimensional submodule of R",
then the code is denoted as an [n, k] linear code over R.

Definition 1.2.6 ([24]) Let C be a linear code over R. Then, the orthogonal of C' is defined as:
Ct={veR"|[v,w]=0, VYweC}

where [v, w] = Zviwi.



Definition 1.2.7 ([24]) A code is said to be self-orthogonal if C C C* and self-dual if C = C+.

Definition 1.2.8 ([24]) Two codes C' and C" are equivalent if C' can be formed from C by per-
muting the coordinates of C.

Definition 1.2.9 ([24]) A code C is said to be isodual if C and C* are equivalent codes.

([24])

Definition 1.2.10 The automorphism group of a code C, denoted Aut(G), consists of all per-
mutations of the coordinates of the code that fix the code.

Definition 1.2.11 ([24]) Let C' be a code over a ring R = {ag,a1,...,a,-1}. The complete
weight enumerator for the code C' is defined as:

r—1
n;(C
cwee(Tag, Tays -1 Tary) = Y | J2mi@ (1.1)
ceC =0
where there are n;(c) occurrences of a; in the vector c.

Definition 1.2.12 ([24]) The Hamming weight of a vector v € R™ is wty(v) = |{i | v; # 0}].

Definition 1.2.13 ([24]) The minimum distance of a code C' over R is the minimum of all the
hamming weights.

Note that an [n, k, d]-code over R is an [n, k| code over R with minimum distance d.

Definition 1.2.14 ([90]) The general weight enumerator of a code is defined to be the polynomial
We.(z) = Z A2
=0

where A; denotes the number of codewords in C' of weight 1.

Definition 1.2.15 ([24]) We say that a code is formally self-dual with respect to some weight
enumerator if the code and its orthogonal have the same weight enumerator.

Definition 1.2.16 ([24]) A code is isodual if any weight enumerator for the code C' is identical
to the weight enumerator of its orthogonal.

Lemma 1.2.17 ([24]) If C is an isodual code then it is formally self-dual with respect to any weight
enumerator.

Lemma 1.2.18 ([24]) A code C over a Frobenius ring R satisfies |C||C*| = |R|".

Definition 1.2.19 ([59]) If the weights of all codewords in the self-dual code C' are divisible by 4,
then C' is called a Type II (doubly even) code. Otherwise C' is called a Type I (singly even) code.
7



Binary self-dual codes have bounds on their minimum distances:

Theorem 1.2.20 ([91]) Let d;(n) and di(n) be the minimum distance of a Type I and Type II
binary code of length n, respectively. Then

d[[(n) < 4|_ i

— |+ 4
< 24J+

and
4|21 4+4 ifn£22 (mod 24)
dr(n) < { 4ﬁj +6 ifn=22 (mod 24).

24
Definition 1.2.21 ([59]) Self-dual codes meeting these bounds are called extremal.

We now introduce a new family of rings called Rj.
Definition 1.2.22 ([30-32] ) Define the ring Ry, as
Ry, = Faluy, uy, . ... ;Uk]/<ui27uiuj - ua”z)

These rings are local rings of characteristic 2 with maximal ideal m = (uy, ua, ..., ux). This max-
imal ideal is also necessarily the Jacobson radical of the ring, which can be characterized as the

intersection of all maximal ideals. The socle, which is the sum of all minimal ideals, for the ring R},
is Soc(Ry) = (uyus - - -ug) = mt. We have that |Ry,| = 22°.

In general, a Gray map is a distance preserving map, but we will define a Gray map formally over
Ry.

Definition 1.2.23 ([32]) We define ¢1(a + buy) = (b,a + b), where ¢ maps Ry to F3. Then view
Rluy, ug, ... us] as Rluy, ug, ..., us_1)|[us] and define ¢s(a + bus) = (b,a + b). Then the map ¢y, is
map from Ry to ]F%k

Theorem 1.2.24 ([32]) Let C be a self-dual code over Ry, then ¢4(C) is a self-dual code in FZ".

We now describe the ring Fy + ulF4 and its connection to Fo + ulFy (R;). Note that Fy = {0,1} and
Fy + ulFy = {0,1,u,1 + u}. We also provide other Gray maps that allow us to go from F; + ulF4 to
Fo+ulFy. Note that w,w € Fy+ulFy. We also give important results regarding these other Gray maps.

Let Fy = 5 (w) be the quadratic field extension of Fy, where w? +w + 1 = 0. The ring Fy + ulF, is
defined via u? = 0. Note that Fy + uFF4 can be viewed as an extension of Fy + uFs and so we can
describe any element of Fy + ulF4 in the form wa + wb uniquely, where a,b € Fy + ulF,.

In [34] and [25] the following Gray maps were introduced;

e, 1 (Fa)" — (Fp)™
aw + bw — (a,b), a,beFy

Prsturs © (Fo + ulfg)" — F3"
a+bur— (bya+b), abelF;.

8



Those were generalized to the following maps in [82];

wF4+u]F4 : (]F4 + U]F4)n — (Fg + UF2>2n
aw + bw — (a,b), a,b e (Fy + ulfy)"

PFytrurs @ (Fa +ulFy)" — FP
a+bu— (bya+b), abelF}

These maps are distance preserving. The binary images ¢, 1ur, © Ur, +ur, (C) and Vg, o pp, 1ur, (C)
are equivalent. The Lee weight of an element is defined to be the Hamming weight of its binary
image.

Proposition 1.2.25 ([82]) Let C be a code over Fy+ulFy. If C is self-orthogonal, so are ¥p,ur, (C)
and pp,+ur, (C). C is a Type I (resp. Type 1I) code over Fy + ulFy if and only if ¢r,+ur, (C) is a
Type I (resp. Type II) Fy-code, if and only if Yp,ur, (C) is a Type I (resp. Type 1) Fy + ulFy-code.
Furthermore, the minimum Lee weight of C' is the same as the minimum Lee weight of Vg, ur, (C)
and PF4+uF4 (C)

Corollary 1.2.26 ([82]) Suppose that C is a self-dual code over Fy+ulFy of length n and minimum
Lee distance d. Then pp,iyr, © Ur,tur, (C) is a binary [4n,2n,d] self-dual code. Moreover, C
and Qr,ur, © Ur, s, (C) have the same weight enumerator. If C' is Type I (Type 1), then so is

PFy+uFs © ¢F4+UF4 (C)

Theorem 1.2.27 ([29]) Let R be a finite Frobenius ring with the property that there exists ¢ € R
such that ¢ = —1. Let G = (r;) be a generator matriz of a self-dual code C' over R of even length
n, where r; are the row vectors of the matrix G respectively for 1 <1i < k. Let x = (x1,...,x,) be
a vector in R™ such that [x,x] = —1 in R. Suppose y; = [x,1;] for 1 < i < k. Then the following
matrix:

1 0 |X

—Y1 Chi |

Yk CYr | Tk
generates a self-dual code C over R of length n + 2.

Throughout this thesis, we use the following notation for the elements of Iy + ulFy:

0000, 1 <5 0001, 2 <+ 0010, 3 ¢ 0011,
0100, 5 <+ 0101, 6 <> 0110, 7 <> 0111,
1000, 9 <+ 1001, A ¢ 1010, B < 1011,
< 1100, D« 1101, E < 1110, F < 1111.

Q o~ o
r T2

We use the ordered basis {uw,w,u, 1} to express the elements of Fy + ulF,. For instance, 1 + uw
corresponds to 1001, which is represented by the hexadecimal 9.

Finally, we define k-range neighbours as we will use this definition to construct new extremal
binary self-dual codes. Two self-dual binary codes of dimension k are said to be neighbours if their
intersection has dimension k& — 1.

9



Definition 1.2.28 ([90]) Let N(g) be a binary self-dual code of length 2n. Let xq € F3"\ N, define

Nty = <<$z>L NN, lEz>
where Ni;1) is the neighbour of Ny and x; € F3" \ N).
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Chapter 2
The Structure of U(F4:(C, x Dg))

Group rings have been a topic of increasing interest since their introduction by Higman in the
1940s, [58]. In particular, units of group rings have been studied extensively by many authors such
as [11,12,19,58,66,88], to name a few. By 1992, numerous units of group rings had been presented,
which allowed conjectures to be formulated and hypotheses to be tested, [93].

Despite the extensive research in the area growing, it is still relatively difficult to establish the struc-
ture of the unit group of a group ring, especially in terms of the group or the ring. To date, the
best known result relating the structure of the unit group of a group ring regarding the underlying
ring is U(RG) = U(R) x V(RG) where V(RG) is the normalized unit group of RG, [89].

When the characteristic of the ring doesn’t divide the order of the group, there exist many useful
results that can be used to find the decomposition of the group ring and hence the structure of
the unit group (see section 1.1). However, when the characteristic of the ring divides the order of
the group, very little is known in terms of techniques for establishing the structure of the unit group.

It is well known that if F' is a field of characteristic p and G is a finite p group, then, V(FG) is a
finite p-group of order |F|I¢I=1. In [92], a basis for V(F,G) was established where F, is the Galois
field of p elements and G is a finite abelian p-group.

In terms of group algebras, numerous unit groups have been established for small cases of dihedral
groups, alternating groups and symmetric groups; the structures of the unit groups of order 6, 12,
18 and 24 over fields of characteristic 3, have been shown in numerous papers, [21,36,45,81,94,95].
In [78], the unit group of FyDy, is constructed where p is an odd prime. In [79], the order of
U(For (G x Can)) is determined in terms of the order of U(RG) for any finite group, G.

In this chapter, we continue this line of research in establishing the structure of the unit group of a
group algebra where the characteristic of the ring divides the order of the group. In [21,36,45] respec-
tively, the structures of U(Fsx Dg), U (Far D12) and U (F31 (C3 x Dg)) were established. In this chapter,
we extend the techniques used in these papers to determine the structure of U (Fsx(C,, x Dg)). This
chapter is joint work with my supervisor, Joe Gildea, and the results are published in [46].
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From here, we provide numerous individual results and calculations in order to prove our main
results. However, first we will begin by stating our main result, Theorem 2.0.4:

Z/{(]th (Cn X D6)) = (ant X Cgt) X Z/{(th(Cg X Cn))
and Corollary 2.0.5:

(C3M % CFt) x C2 if n|(3" —1)

Fs:(C,, x Dg)) =
U(F3(C,, x Dg)) {(ant 1 Cot) <C2f1 y C2fz Cox O (V) Cg,,_l) ifn=23m

where f;(V) = t(|Csn® | = 2|Csn®| +|C5n ™).

Firstly, let C5, = (z | 2* = 1) and

p—1 1
= Z O[Z+p]+1x 6 RC;
i=0 7=0
then,
o) = (41
A, Ay
where A; = cir(a;-1)p11, QG-1)pt2; - - - Qp) and A% = cir(ap, ag-1)p1s - - Ajp-1)-

Alternatively, let Dy, = (z,y | 2? = y* = 1,2¥ =y~ ') and

p—1 1
= Z Qitpj12'Yy’ € RDy,
=0 5=0
then,
o(v) = (Al Az)
Ay AY
where A; = cir(Qg-1)p+1, AG-1)p+2; - - - 5 Ujp)-

Let G = C, x Dg = (z,y,2]2® = ¢y* = 2" = 1,2Y = 27}, vz = 2z, yz = 2y) where n > 1.
The natural group homomorphism G — G/(x) extends linearly to the algebra homomorphism
0 : Fse(C), x Dg) — F3:(Cy x C),) where

3

i—1 n—I1 n—1
E 17 (i + i3z 4 -+ gan 2" + Qigsni3y + Qipgni6Y2 + - + Qigpeny2™” )
i=1

4
Z(O‘i + ipab 4+ Qirand" T+ Qigan3a 4 Qipanieab + -+ ipenab™ )
i=1

12



and Cy x C,, = (a,b|a* = 0" = 1, ab = ba). If we restrict 6 to U(Fs(C, x Dg)), we can
construct the group epimorphism 6’ : U(F3:(C,, x Dg)) —> U(F3:(Cy x C},)). Consider the group
homomorphism v : U(F3:(Cy x C,,)) — U(F3:(C,, x Dg)) by

”)/1—|-’)/2b+ . _i_f)/nbnfl +51a+52ab+ e _i_énabnfl —
N+ Yzt Oy + Gy 4 Gy

where v;,; € Fa:. Clearly, 6 o4 is the identity map of U (For (Co x Cy,)). Therefore U(F3:(C), x Ds))
is a split extension of U(F3:(Cy x Cy,)) by ker(0') and U(Fs:(C,, x Dg)) = H x U(F3(Cy x Cy,))
where H 2 ker(6").

Clearly, we have expressed U(Fs:(C,, x Dg)) in terms of H and U(F3(Cy x C,,)). Now, we will
concentrate on establishing the structure of H; we can show it has exponent 3, and we will express
H as a semidirect product of two abelian subgroups of H.

Lemma 2.0.1 H has exponent 3.

Proof. Let h =1+ ) 2+ » Byy € H where

j=1 k=1

91 Zazw (j—-1)% IE - 1) and By, = Za2+2(k+n 1)% ZF l(f - 1)

i=1

a; € Fsi. Then
n n 2
= <1 + ij + Z%w)
=1+ 2221 + 22%,4/ + ZZQ[ Ay

j=1k=1

+ ZZQ‘J"BW + Zz%ﬂﬂlk + Zz%jy%ky

j=1k=1 j=1k=1 j=1k=1

-1+ 2221]- + 2228ky

EYS B ¢ 3@, 8,2,y
=1 k=1

j=1k=1

where y, = 2,y and yB, = B y.

13



Firstly, note that,

(z—1)2=(x—1)(z—1)

=22 —2x+1
=2’ +r+1=2
(22 = 1) = (22 = 1)(z* = 1)
=2t — 2% +1
—rx+22+1=2%

and (z — 1)(2* = 1) = (2 — 1)(z — 1)
2 -t —r+1
=1—-2—2z+1
=207 422 +2 =27

Now

A2, = (277 a1 (r — 1) + ag;(2® = 1)) (" Hagk-1(z — 1) + agi(2? — 1))
= 272 (g a1 (z — 1)% + agj_jagp(z — 1) (22 — 1)
+ agjagp 1 (2% — 1)(z — 1) + agjag(z® — 1)?)
= 22 (g a1 @+ 200 1ot 4 2000k 1 & + Qi)

= Zj+k72((a2j71042k71 + agjar) + 2(gj_ 100k + gj0nk_1))T,

BB, = ByBry
= (N agjszn-1(x — 1) + agjpon(@® — 1)) (2" Hagk-1(z = 1) + agi(2? — 1))
= 22 (g an1(x — 1) + anjpan(a” — 1)) (anpor (@ — 1) 4 ag(2® — 1))
= Zj+k72<042j+2n71052k71(x —1)* + Q9 4on—100k (T — 1)(z® = 1)
+ oo 1 (72 — 1)(z — 1) + agjyonaar(r? — 1)?)
j+k72<

=z 9 42n—1002k—1T + Q254 2p— 100,27 + Qg ponCok—12T + Qgj1on kT

A

k-2
=2’ ((a2j42n—100k+2n + Q2420 0ok ran—1) + 2(02j12n—102%k+2n—1 + 2j12nQ2k120)) T,

A By = (27 (g1 (z = 1) + ag;(a? = 1)) (2" Hagpron1 (& — 1) + aggron(a® — 1))
= a4 (1= 1) (0 — 1)) skezn 12 — 1) + Qe — 1)
= Zj+k_2(042j—1042k+2n—1($ —1)%+ Q2j_1Qokton (T — 1)(z* - 1)
+ qgjopran_1(7* — 1)(z — 1) + agjampion (2 — 1)?)
= 212 (g; 1 aopron 18 + Qo 100k 49023 + QojQogion 123 + QojQag o
= 2772 ((agjo1Qoksan—1 + Qojagion) + 2(02)—1Qogyan + QojQopion—1))3,
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and
B2, = By,
= (N agjsn-1(x — 1) + agjion(@® — 1)) (2" a1 (z — 1) + ag(2? = 1))
= 22 (g0 1 (1 — 1) + agjpon(2? — D) (agp_i( — 1) + agp(2? — 1)
= 2 (g 00 100k 1 (7 — 1)% 4 agjron 1aar(r — 1)(2* — 1)
+ qgjrontop_1(7* — 1)(z — 1) + agjyonaap(r? — 1)
= 22 (g 00 100k 18 + Qgjon 100828 + Qojron0ok 123 + Qo) oo

= Zj+k_2((042j+2n—1a2k + gjron—102k-1) + 2(Q2jt2n—100k—1 + Q2j1on02k)) T

Therefore, ZZ(Q{jQ{k"‘%]‘%;) +ZZ(2lj%k +B,2}, )y takes the form & (71 +72y) where v1,7, €
Jj=lk=1 j=1k=1
Fy.:NOW}

hd = <1 +2) W +2) By + &+ m)) (1 + 2221]- + 2Z%ky>

j=1 k=1

—1+3ZQL +3Z%ky+2<22wk+%93’ +ZZQ‘%“%Q‘/) )

j=1k=1 j=1k=1

+ (71 +72y) + 2(n +2y) Z Aj + (1 +12y) Z By
j=1 k=1

=1+ 2(&(1 + 7)) + &1 + ) + (7 + 729) Zﬂ + 2 + 729) Z%ky

7j=1 =

=14 Z(y1 + 1y) ZQ[ + (71 + 72y) Z%ky

7j=1 =

2 n
Clearly 22; = & Yty ' (2' — 1) Z Qisa(joy? (& — &) = 0, &(71 + 72y) D _ Ay = 0and

i=1 j=1

(1 + 2y) Z B,y = 0. Therefore H has exponent 3. [ |
k=1

The first abelian subgroup of H that we construct is Cy(x), where Cy(x) is the centralizer of x in
H. As the exponent of H is 3 and Cy(x) is abelian, Cy(z) is an abelian 3-group.

Lemma 2.0.2 Cpy(x) & C5".
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Proof. Clearly Cyy(z) = {h € H|zh=ha}. Let h=1+> 2+ > By € H where

j=1 k=1

91 Zazw (j—1)% A IE - 1) and By, = Za2+2(k+n 1)% ZF l(f - 1)

i=1

and o; € Fy:. Now

xh —hr =2 (1 + ZQ[]' + Z%w) - (1 + ZQ[]' + Z%ky) x
j=1 k=1

j=1 k=1
=z (Z‘Bw) — <Z%ky) x
k=1 k=1

By — Bryr = 2" (aojr20-1(2% — 2) + @ojsan(1 — ) — (Q2ji2n-1(1 — %) + qgjyon(x — 2%))]y

o k-1
= XYz (a2j+2n - 052j+2n71)-

Now,

Therefore, every element of Cy(z) takes the form

1+ ZQlj + Zozprgniyzl_l
j=1 =1

where 2; =Y a1z’ (z' = 1) and a; € Fyr. Clearly, ()2 = 33 = 0 and #2(; = 2;&. Therefore
=1
Chx(z) is an abelian group of order 3" . 3" = 33, |

The next subgroup that we construct is also an abelian 3-group. We define it element-wise as
follows:

Lemma 2.0.3 Let S be the subgroup of H where the elements of H take the form.:
1+ %
j=1

consisting of R, = er] (1+1)2""" and r; € F3:. Then S = O},

=1
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Proof. Let 31—1—1—2% ESandsg—l—i-Z‘Z € S where R; —erj 1+y)23 ! , T =

7j=1 7j=1 =1
2

Zitjxi(l +9)2/~! and r;,t; € F3:. Now

=1

$189 = <1 + i‘)‘@) (1 + i‘i})
=1+ i(iﬁ] + %) + (i 9%-) (i ‘Zj>

and

2
R, T = (Zirj (14 y)2~ 1) <Zzth 1+y)z )

i=1
= (rjx + rjzy + 2rj2° + 2r;2%y) (b + tyry + 2t0” + o a’y) 2 T2
= 7;t5(9 + 9y + 62 + 62y + 327 + 32?y) 7 T2

= (12 = 3iyrjtea’ (1 + y)2 T2

= 0.
Clearly s1s9 € S and S is abelian, therefore S = C%*. [
We are now in a position to describe the structure of H in terms of the semidirect product of abelain
3-groups.

Theorem 2.0.4
U(F3:(C,, x Dg)) = (C’g"t X C’g‘t) X UF3:(Cy x C))

Proof. Let ¢ = 1+ ZQ[]‘ + ZozHgnfyzl_l € Cy(zr) and s = 1 + Z‘ﬁj € S where U; =

j=1 ll j=1

ZCYH_Q(J 12 x —1), R, = ZM’] (1+y) z] L and a;,r; € F3:. Now

® = s%cs

n 2 n n n
= (1 +) 9@) (1 +) A+ ZaHgniyzl_l) (1 +> mj)
Jj=1 j=1 =1 Jj=1
= (1 +23)° i)@) <1 + U+ Zalmi’yzl‘l) (1 +) 9%-) .
j=1 j=1 =1 j=1
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Now R;* = 0 and #R; = 33r;(1 + )27~ = 0 = R;3, therefore

=1+ éﬂj + lzn;osz”i:yzll +2 (é srg-) (éag) + (izg) (Zn: 9@-)
(5 () ()

7j=1
Now, R;;, = rj(ag, — ag,_1)z(1 — NEALES R, = rj(oop — aop—1)T(1 + y)z/*=2 and

28,2 + WM, = rj(aoy — ag—1)2[2(1 — y) + (1 + y)]7 T2
= 7j(Qap_1 — gy ) By TF2
Additionally, R;20,R; = 0 since #R; = 0. Therefore ¢* € Cy(z) and consequently Cy(z) is a

normal subgroup of H. Finally, Cy(x)NS = {1}, H = Cyx(z).S and H = Cy(x) x S =2 C3" x CH.
|

It remains to establish the structure of U (Fs:(Cy x C,)).
Corollary 2.0.5

(C3" % Cg") = C ifn|(3" = 1)

U(F5:(C,, x Dg)) =
(F5+(Cr > D)) {(ant X CP) X <C§f1(v) X C;f(v) X e X C%’”(V) X C§m,1> ifn=3"

where f;(V) = t(|Cs®| = 2|Cyn™ | + [C5n*7).
Proof. It is well known ([92]) that

th(CQ X Cn) = (]thCQ)Cn = <F3t D F3t)Cn = F3tCn D thCn.

If n|(3" — 1), then F5:C,, = @I, F5: by Corollary 3.5.6 in [90]. Therefore, U (F3:(Co x C,)) = C2* |
when n|(3" —1). When n = 3™, the number of cyclic groups f;(V') of order 3' in the direct product
of V(F3:G) is

fiV) = t(1Csn® | = 2|Cyn® | + [Cm®™)).
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Chapter 3

Constructions of Self-Dual and Formally
Self-Dual Codes from Group Rings

It is a well known fact that certain ideals in Group Rings correspond to certain linear block codes.
In [13], it was shown that the Reed-Muller codes can be constructed from certain ideals of the
group algebra of 2-groups over a finite field of characteristic 2. Furthermore, in [14], it was shown
that certain ideals of the group algebra of p-groups over a field that contained a p**-root of unity,
correspond to MDS-codes. A useful collation of known results on error-correcting codes which are
ideals in group algebras have been constructed by Kelarev and Solé, [80].

In 1990, the famous extended binary Golay code was constructed from an ideal of the group algebra
FyS, where Sy is the symmetric group on 4 elements, [15]. In 2006, a certain isomorphism from
a group ring to a certain subring of the n X n matrices was established [60]; a representation of
RG expressed in the basis GG. Later, this isomorphism was used to construct the extended binary
Golay code and the famous [48,24,12] code from the group algebras Fy Dy, and FyDyg where Doy
and Dyg are the dihedral groups of orders 24 and 48, [84,85]. Today, this established isomor-
phism is used, under certain conditions, to construct self-dual and quantum codes. In particular,
three essential conditions are provided for when group rings can be used to construct self-dual codes.

In this chapter, we describe G-codes, which are ideals in a group ring of a finite group G, over a
finite commutative Frobenius ring. We prove that the dual of a G-code is also a code. Building on
the work of Hurley [61], we show that one of the three conditions that is required for construction
self-dual codes from group rings in unnecessary. We show that several of the standard construc-
tions of self-dual codes are found within our general framework, and we prove that our constructed
codes must have an automorphism group that contains G as a subgroup. Here, we also prove that
a common construction technique for producing self-dual codes cannot produce the putative [72,
36, 16] Type II code. Furthermore, we produce formally self-dual codes over a finite commutative
Frobenius ring. Finally, we conclude this chapter with establishing which group algebras (FyG
where |G| = 24) can be used to construct the extended binary Golay code. This chapter is joint
work and the results are published in [26].
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3.1 Codes and Ideals

We shall consider codes that are ideals inside of a group ring, where the ring is the alphabet of the
code and assume that the ring is a finite commutative Frobenius ring. For a given element v € RG
(where R is a Frobenius commutative ring and G is a group), we define the following code over the
ring R:

C(v) = {o(v)), (3.1)
where o is defined in Theorem 1.1.15. Namely, the code is formed by taking the row space of o(v)
over the ring R where o(v) is the previously described map in [60].

We shall now show that the codes we construct are actually ideals in the group ring. We use
this to get information about the automorphism group of the constructed code.

Theorem 3.1.1 Let R be a finite commutative Frobenius ring and G a finite group of order n. Let
v € RG and let C(v) be the corresponding code in R". Let I(v) be the set of elements of RG such
that > c;g; € 1(v) if and only if (an, aa, ..., an) € C(v). Then I(v) is a left ideal in RG.

Proof. The rows of o(v) consist precisely of the vectors that correspond to the elements hv in RG
where h is any element of G. The sum of any two elements in (v) corresponds exactly to the sum
of the corresponding elements in C'(v) and so I(v) is closed under addition.

Let wy = ) B;g;: € RG. Then if wy corresponds to a vector in C(v), it is of the form ) v;h v.
Then wywy = Y Big; Y vihiv = Y Biv;gih;v which corresponds to an element in C(v) and gives

that the element is in I(v). Therefore I(v) is a left ideal of RG. |
10000111
01001110
00101101

Example 3.1.2 Let v = 1+ba+ba*+ba® € FoDg where (a,b) = Dg. Then o goo1ott
e
10110001

10000111
and o(v) is equivalent to A = (8(1)(1’8% é?). Clearly C(v) = (o(v)) is the [8,4,4] extended
00011011

Hamming code. Let vy = 1 4 ba + ba® + ba® € FyDg, vo = 1 + b+ ba + ba? € FyDg, v3 =
1+0b+4ba+ba® € FoDg and vy = 1 + b+ ba® + ba® € FyDg where v; are the group ring elements

corresponding to the rows of A. Let I(v) = {ZZ L aviloy € Fa}. Then I(v) is a left ideal of FoDsg
and in particular 1(v) is the left principle ideal of FoDg generated by v.

Corollary 3.1.3 Let R be a finite commutative Frobenius ring and G a finite group of order n. Let
v € RG and let C(v) be the corresponding code in R™. Then the automorphism group of C(v) has
a subgroup isomorphic to G.

Proof. Since I(v) is an ideal in RG we have that I(v) is held invariant by the action of the elements
of G. Tt follows immediately that the automorphism group of C(v) contains G as a subgroup. W
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We note that our construction gives a natural generalization of cyclic codes since cyclic codes
are ideals in RC,, where C,, is the cyclic group of order n. Cyclic codes are held invariant by the
cyclic shift, whereas our codes are held invariant by the action of the group G on the coordinates.
Moreover, this is the strength of our construction technique. Specifically, we can construct a code
whose automorphism group must contain a given group. In this sense, when the group used is G,
we can refer to a code that is an ideal in RG as G-codes, where G is replaced by the name of the
code when known. Therefore, classically we can say cyclic codes, but we can now say dihedral codes
or dicyclic codes. When something applies to any group we can still say G-codes. It is immediate
that a code of length n can only be a G-code for some G if it has a subgroup of its automorphism
group of order n.

Example 3.1.4 Let C be the extremal [48,24,12] Pless symmetry code. The automorphism group
of this code is PSL(2,47). A computation in GAP [97] shows that the only subgroup of PSL(2,47)
of order 48 is Dys. Hence the only possible construction of this code by our technique must have
G = Dyg. This construction is given by McLoughlin in [85]. This gives that the Pless symmetry
code s, in fact, a dihedral code.

Combining the results in [4], [6], [10], [86], [87] and [99], we have that the automorphism group
of a putative [72, 36, 16] code must have order 1,2, 3, 4, or 5. Since it is impossible for a group of
order 72 to satisfy these we have the following corollary.

Corollary 3.1.5 The putative [72,36,16] code cannot be of the form C(v) for any v € FoG for any
group G.

Proof. The result follows immediately from Corollary 3.1.3 and the previous discussion. |

Note that a code whose automorphism group is trivial cannot be constructed by this technique.

One of the fundamental results about cyclic codes is that the orthogonal of a cyclic code is again
a cyclic code. In this subsection, we generalize this results to codes that are ideals in a group ring.
That is, we show that if C' is a G-code for some G then its orthogonal C* is also a G-code.

Let I be an ideal in a group ring RG. Define R(C') = {w | vw = 0,Vv € I}. It is immediate that
R(I) is an ideal of RG. Let v = a4, g1+ ag, 92+ . . a4, 9, € RG and C(v) be the corresponding code.

Let U : RG — R" be the canonical map that sends ag, g1 + ag,92 + . . . @y, gn t0 (ag,, ag,, ..., a,,).
Let I be the ideal ¥~(C), and let w = (wy,ws, ..., w,) € C*+. Then

[(agjflgl, Uy tgys ,agjflgn), (w1, wa, ..., wy,)] =0,Yj. (3.2)
This gives
> a,,w =0, Vi, (3.3)
-1
Let w = ¥~ H(w) = > w,,g; and define W € RG to be W = by, g1 + bgyg2 + - - - + by, g, where

by, = w (3.4)

—1.
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Then

Zaﬁl w =0 = Zaﬂ Dy = (3.5)

Then g; tgigi ' = gj_l, hence this is the coefficient of gj_ in the product of w and gj_lv. This gives
that w € R(I) if and only if w € C*.
Let ¢ : R* — RG by ¢(w) = W. It is clear that ¢ is a bijection between C+ and R(¥~1(C)).

Theorem 3.1.6 Let C = C(v) be a code in RG formed from the vector v € RG. Then ¥~1(C*)
s an ideal of RG.

Proof. We have that W(¢(Ct)) is permutation equivalent to C+ and ¢(Ct) is an ideal and so
U—1(C) is an ideal as well. |

The following is a rephrasing, in more general terms, of Theorem 1 in [60] where R is assumed
to be a finite commutative Frobenius ring. The proof is identical and simply consists of showing
that addition and multiplication is preserved.

Theorem 3.1.7 Let R be a finite commutative Frobenius ring and let G be a group of order n.
Then the map o : RG — M, (R) is an injective ring homomorphism.

For an element v = Y. a;9; € RG, define the element v7 € RG as vT = Y a;g; . This is
sometimes known as the canonical involution for the group ring. Note that involution is defined as
a function or operator that is equal to its inverse, and therefore gives the identity when applied to
itself. The reason this notation is used in this setting will be apparent by the next lemma.

Lemma 3.1.8 Let R be a finite commutative Frobenius ring and let G be a group of order n. For
an element v € RG, we have that o(v)T = o(v7).

Proof. The ij-th element of o(vT) is Qgrig )1 = Ol which is the ji-th element of o(v). [

Next, we give our first result about the structure of our constructed codes.

Lemma 3.1.9 Let R be a finite commutative Frobenius ring and let G be a group of order n. If
v=1ov" and v? =0 then C(v) is a self-orthogonal code.

Proof. If v = v” then o(v)” = o(v’) by Lemma 3.1.8. Then we have that (o(v)o(v));; is the
inner-product of the i-th and j-th rows of o(v). Since v?> = 0, by Theorem 3.1.7 we have that
o(v)o(v) = 0. This gives that any two rows of o(v) are orthogonal and hence they generate a
self-orthogonal code. [ |

We can now use this lemma to construct self-dual codes. For codes over fields we could simply
use the dimension of o(v), however over an arbitrary Frobenius ring, we cannot determine the size
of the generated code simply from the rank of the matrix. Therefore, we have the following theorem.
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Theorem 3.1.10 Let R be a finite commutative Frobenius ring and G be a group of order n, with
v an element in RG. If v =", 0> =0 and |C,| = |R|> then C, is a self-dual code.

Proof. By Lemma 3.1.9 the code C, is self-orthogonal and since |C,| = |R|z we have that C, is
self-dual. ]

Notice that unlike the field case we are not assuming that n is even. For example, let R = Ry,
and G be the trivial group of size 1 with v = w;eq where eq is the identity of the group. Then
o(v) = (u;) and C, is a self-dual code of length 1.

In the following example, we show the strength of this construction by constructing a code over
R, using the alternating group on 4 elements, which has an image under the associated Gray map
of the length 24 extended Golay code.

Example 3.1.11 We shall use the previous results to construct the binary Golay code from the
ring Ry. Let v = u(b + ab + ac + bc®) + (be + bc?) + (1 + u)(c* + abc?) € Ry Ay. Then, C, is
a self-dual code of length 12 over Ry. Hence ¢p(C) is a binary self-dual code of length 12 by
Theorem 1.2.24. The binary code ¢r(C) has a generator matriz of the following form: (]12 A)

101100101101
111001101010
111110000110
101010011011
SERTILES
where A = | 119981908308 It is a simple computation to see that ¢(C,) is the [24,12,8]
011010111100
010111011010
001111010101
011100110011
000001111111
Golay code.

Lemma 3.1.12 Let R be a finite commutative Frobenius ring and let G be a group of order n. If
v=> ;g and w = «;g;h for some h € G then C, and C,, are equivalent codes.

Proof. The generator matrix for C,, is formed from the generator matrix of C,, by permuting the

columns corresponding to multiplication of the elements of G by h. Hence, the codes are equivalent.
[ |

8
N

Example 3.1.13 Let v, = xyz € Fo(Cy x Cy x Cy) where (x,y,z) = Cy x Cy x Cs.

Z+
11

Now o(vy) is equivalent to 6%) The code C(vy) is the the [8,4,4] extended Hamming
10
+

~ N\
[slelel oy +

oOoO—O
= O —HOOO

RROR 2 ORo0

code. Next, let us conside yz+ayz)y =y+az+z+axyz € Fo(Cy x Cy x Cy). Then

. Clearly C(vy) is equivalent to C(vy).

O

T Vo
1001
o(vq) is equivalent to | 3591
0000

3.2 The Extended Binary Golay Code

Next, we consider constructing the extended binary Golay code from certain group algebras. We
shall now consider constructions of the [24, 12, 8] binary Golay code from FyG for various groups G.
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It is well known that the automorphism group of the [24,12,8] code is the Mathieu group May.
Therefore, the only possible groups that can work for our construction are

SL(2,3), 54, D24, (06 X CQ) X 02703 X Dg,Cg X A4 and 022 X D6.1

Initially, it was shown in [15] that the [24,12, 8] code could be constructed from ideals in the
group algebra Fy Sy where S is the symmetric group on 4 elements. In [84], the [24,12, 8] code was
constructed from FyDo4. We shall now separately consider the remaining cases.

3.2.1 The Group (3 x Dy
We begin by considering the group C3 x Dg. Let v be the element

4

v = Z[ai_l(ai + Qa2 + ais2?) +ba" N @ip1e + Qip167 + Qir202”)] € Fo(C3 x Dy)
=1

where (z) = C3, (a,b) = Dg and «; € Fo. Now

0-(3 %)

Al A2 Ag Bl BQ B3
where A= | A3 Ay Ay |, B=|(Bs B By,
AQ Ag Al BZ B3 Bl
Ay = car(og, g, as,ay),
Ay = cir(as, ap, a7, 08),
As = car(ag, g, 11, 012),
By = rcir(ags, aig, 15, aq6),
By = rcir(agr, aus, g, i),
Bs = rcir(ag, ag, ass, i)
and cir(aq, g, ..., ap), rar(ag, s, .. ., ay) are circulant and reverse circulant matrices respectively
and y, as, . .., q, is the first row of the respective matrices. Clearly (o (v)) is self-dual if o(v)T =

o(v). Now, o(v)? = o(v) if and only if ay = a4, a5 = ag, ag = a1, a7 = a1, ag = 1o, a17 = Aoy,
a18 = Qgg, A19 = Qo3 and agy = agy. Next, consider elements of Fo(C3 x Dg) of the form

{ay + as(a + a®) + aza® + ay(z + 22) + asaz(1 + a?2) + aga®z(1 + 2) + azaz(a® + 2)
4

+ > blaigr + iz +2°)a ! a; € Fy }

i=1

!These groups are SmallGroup(24,i) for i € {3,6,8,10,12,13,14} according to the GAP system [97].
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and in particular the element v; = 1+ b[(@ + 1) + (1 4+ a)( + 1)] of this set where @ = Y7 a’ and
2 =37 2" The matrix o(v,) is equivalent to

(4 1)

where
011111001100
111010011001
110100110011
101101100110
110001111100
A— | 100111101001
= loo1111010011
011010110110
110011000111
100110011110
001100111101
011001101011
It is a small computation to see that C'(vy) is the [24, 12, 8] code. The full calculation using Magma

is given in Appendix A.1. Moreover, it can be shown that the above set contains 128 elements that
generate the [24, 12, 8] code.

3.2.2 The Group (5 x Ay

Next we consider the group Cy x Ay. Let v be the element
3
v = Z(O&M,g + Q00 + 0441',15 + oz4iab + Q45497 + Qgir10T4 + Oé4i+11.CL'b + a4i+21xab)c"*1
i=1

€ FQ(CQ X A4)
where () = Cy, a = (1,2)(3,4), b = (1,3)(2,4) and ¢ = (1,2,3) and «o; € Fo. Now

-(3 %)

A2 A2 Ag BQ B2 BS
where A = A4 A5 Aﬁ s B = B4 B5 BG s
A7 Ag Ag B7 B8 B9

Ay = be(ay, ag, as, ay), As = be(as, ag, ar, ag), Az = be(ag, g, a1, a2),

Ay = be(ag, g, g, 1), As = be(aq, ay, an, ag), Ag = be(as, as, ag, az),

A7 = bC(Oé5, Qr, Ay, 046), Ag = bC(Oég, 11, (19, ()él(]), Ag = bC(Oél, g, Oy, Oég)7

By = be(oag, ona, cus, cug), Ba = be(onr, aus, g, iag), B = be(aar, aiag, cag, cvas),
B, = bC(Oézl, Qgyg, (92, a23), Bs = bC(Oqs, 16, A14, 0415), Bg = bc(a17, Qgp, 18, CV19),
B; = 50(0417, Q19, Qgp, 0418), Bg = 50(0421, a3, (o4, 0422) and By = bC(Oé13, Q15, A6, 0414)

where bc(a, b, c,d) is a matrix that takes the form Now, o(v) = o(v)? if and only if

[SIESHSES
SR AU
Qo0
N———

a
b
C
d .
as = ag, ag = G132, Ay = 10, Ag = A11, G417 = (21, Q18 = U4, A19 = g4 and agy = ag3. Next, consider
elements of Fy(Cy x Ay) of the form
1
i
{ E o' ((ogir1 + Qgivoa + agiysb + agipaab)+
i=0

(agits + Qsivea + asiyrb + agirsab)(c + %)) | a; € Fal,
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and in particular the element v; = 1 4+ (1 + b(1 + a)(1 + ¢?)) + za(1 4 b)c of this set. The matrix
o(v1) is equivalent to

I A

AT

where

—HOORHRFEORORO

> oo Oo~O~OR
HEORRFOOROORR

1
1
0
0
0
1
1
0
0
1
1
1

HROOORORRHRFO
OO FHEOFOOF
OO ORORRFORF
OFFHOFROFREFORO
HOOHOHKHRFROHOR
—_ OFREHOFFORFOO
N HOFRFRFROORRFRFROO

Y

1
0
1
1
?
A= 0
1
0
0
1
1

8] code. Moreover, it can be shown that
24,12, 8] code.

It is a small computation to see that C'(vy) is the [2
the above set contains 384 elements that generate the

—

3.2.3 The Group (Cs x () x Cy
Next we consider the group G = (Cg x Cy) x Cy. Let v be the element

4
i—1 i—1 2 i—1 i—1 i—1 2 i—1
v = E (Y™ + Qiay"™ + Qs YT+ i1y’ 2+ Qip1eTYT 2+ Qi Y 2)
i=1

< ]FQ((C6 X 02) X 02)

where (Cg x Co) x Cy = (z,y,z|2® = y* = 22 = 1, 2y = y2?, vz = 2z, yz = 2¢°) and o; € Fo.
Now,

a1 a2 a3 4 a5 G Q7 g (9 10 11 12 (13 (14 (15 16 (17 18 (X19 (20 (2] (22 (23 (24
Q2 a1 (13 10 (14 12 g 18 Q7 Q4 Q24 ¥ 3 Q5 17 22 15 8 (21 (23 19 (16 20 (11
a3 13 1 14 10 016 17 23 15 Q5 (21 22 Q2 Q4 Q9 QA Q7 (20 24 (18 11 12 8 (19
Q14 10 ¥4 1 Q2 Q7 16 (24 ¥12 ¥13 (X188 *X15 5 Q3 22 17 (g (21 Qg X1l 20 9 X199 (23
a5 (4 Q10 2 ] Q9 @22 11 g (3 Gy Q17 (14 (13 16 15 (¥12 (]9 (18 (24 (23 Q7 (21 (20
Q24 (11 19 17 9 Q1 Qg Q4 18 (15 22 2 2] Q7 Q20 3 23 @10 A Q5 (12 13 14 16
Q17 Qg Qa7 Q9 2] 23 1 O (13 11 Q5 Q18 15 24 2 Q8 Q3 (22 (14 Q12 (10 20 l6 4
Q23 1y g g (12 (14 (24 1 Q21 22 Q9 @10 20 &l *¥11 G4 19 ¥13 Q7 2 15 5 Q3 Q17
Qg Q17 15 11 24 18 13 22 ] Q19 Q4 (23 Q7 Q2] 3 Q20 2 G 10 (16 14 8 (12 Q5
@10 14 5 13 3 Q15 12 2] 16 1 Q23 Q7 Q4 Q2 Qg (9 22 (24 20 19 Q8 Q17 (11 (18
Q12 Qg Q22 (r1g (23 (21 Q5 Q9 (14 Qg 1 Q19 16 20 4 Q1] *10 A7 (13 Q17 3 Q24 15 Q2
U(U) — Q11 (24 (21 15 Q7 Q2 18 X190 g 17 X1 1 *19 Q9 23 X¥13 20 Q4 12 14 Qg Q3 Q5 Q22

@13 3 Qa2 Qa5 (g (22 15 0 Q17 14 19 g 1 10 Q7 12 9 (23 1] 8 Q24 g (18 (2]
Q4 Q5 (14 3 (13 17 QG 19 22 2 Q20 9 10 1 12 A7 16 (11 (23 21 (18 (15 (24 Q8
Q15 Qa7 g Q2] (19 20 2 12 3 Q24 14 g Q17 11 ] Q18 13 16 A5 Qg (4 Q23 Q22 Q10
Q19 21 Q24 Q7 Q15 O3 (23 (14 20 9 (12 (13 11 17 18 1 Q8 Op (16 10 (22 2 Q4 Op
a7 15 17 24 11 8 3 1 2 2] 10 20 9 19 (13 23 ] 12 Qg4 (22 Q5 Q18 G (14
Q18 (23 (20 (22 (16 (x10 (21 (13 (24 Qg (17 14 g (12 (19 &5 (11 X1 15 &3 Q7 Q4 Q2 Q9
Q16 22 Qg (23 (18 (24 (x4 Q17 (10 20 13 Q1] 12 g Q5 Q19 14 15 1 Q@9 Q2 Q21 Qa7 Q3
Q20 g (18 12 G Q5 Q11 Q2 Q19 1 QA7 Q4 Q23 22 (24 10 21 3 Q9 Q1 Q17 14 13 15
Q22 (1 12 20 8 (11 10 15 (g 23 Q3 24 G (18 14 2] Q5 Q17 2 Q7 1 19 9 13
@21 (19 (11 9 Q17 13 20 Q5 23 Q7 Qg (3 (24 15 g Q2 18 (x]4 22 (4 Q16 ] 10 (V12
ag Q20 (23 (1 (22 (4 (19 3 (11 12 15 A5 (g Qg (21 14 (24 2 Q17 13 9 Q10 &1 Q7
Qg 12 16 g (20 19 14 Q7 Q5 18 2 (21 (22 23 (10 24 x4 9 @3 (15 13 1] Q17 O

and o(v) = o(v)T if and only if ay = a4, ag = as4, ay = ay7, ag = as3, a1; = a1, a15 = a9 and
as1 = agy. Next, consider elements of Fy((Cs x Cq) x Cy) of the form

4 2
{Z(aw“l + gyt + Z(awgﬁy“l + 12y 2) + (ana®y? + ara?z) (1 +y)
=1 i=1

+ oyz + a6x2y3z + arxz + x2y22a8 + a9z + 0414:103/22 + a157Yz + ozlﬁzvy?’z}
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and in particular the element vy = 1+ [a + b+ 0> + (a + a?)(b* 4 b?®)]c of this set. The matrix o(v;)
is equivalent to

(1 4)
where
010110110011
010011101110
101010111010
001111101001
110111000101
A— | 111001100011
= | 110000011111
101101001110
110101111000
001011010111
101100110101
011110011100
It is a small computation to see that C'(vy) is the [24,12,8] code. Moreover, it can be shown that
the above set contains 576 elements that generate the [24,12, 8] code.

3.2.4 The Group SL(2,3)

Next we consider the group SL(2,3). Let v be the element
6
v = ZUCFI (Oéi + A6y + ooy + Oé18+z”y2$) € FaSL(2,3)
i=1

where SL(2,3) = (z,y|2® = y* = (zy)?) and a; € Fy. Now,

where Ay = cire(ay, g, ag, g, as, ag), Ay = cire(ag, as, ag, g, a1, Q12),
Az = CiTC(Oé13, a4, Q5, 06, 7, 0418), Ay = Ci?”C(Oélgy Qg0, (g1, 22, (23, 0424),
As = CiTC(Oé167 Qg2, (g, (13, (19, 0611), A = CiTC(Oé1, 021, 014, Og, (24, 0417),
A7 = C’iTC(OW, 90, 05, X100, (23, 042), Ag = C’iTC(O[lg, 19, Og, (15, Qg, O[g),

Ag = CiTC(OZm, a5, Q21, 7, 18, 0424), A = CiTC(a16, Qg, (20, 13, (O3, a23),
Ay = circ(an, ang, g, 0, g, ), A1g = cire(ag, ayz, iy, (s, 1, Q)
Az = CiTC((X97 Q1g, Qigg, (12, A7, 0423), Ay = CZ'TC(Oé157 a5, (g, A8, A2, 0622)7
A15 = CiTC(Oéﬁ, 11, 0oy, O3, O, 0421), A16 = CiTC(Oél, 16, 010, (4, (13, Oé7).

Now, o(v) = o(v)T if and only if ay = ag, a3 = a5, ar = a6, ag = a1, Gy = Qig, Qg = Q3,
Q12 = Qgg, Qg = Qag, A5 = g, Q17 = Qo and g = anz. Next, consider elements of FoSL(2,3) of
the form:

{ag + ag(z + 2°) + as(2? + 2*) + aur® + as(y + 23y%) + as(zy + 2*y) + oy (2?y + yPz)
+ ag(23y + y?) + ag(2®y + 23y%2) + aro(2y® + 2°y%2) + a (2%y? + 2°y7)
+ ap(z'y? + 2*y°1) + a(zy’s + 2'y’r) | i € Fal.

It can be shown that it is not possible to construct the [24, 12, 8] from any element of this set.
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3.2.5 The Group C? x Dg

Next we consider the group C3 x Dg. Let v be the element
2
V= Z[(Oéi.H + Qa2 + 7w + CYZ'_H()ZUJ) + b(Oéi+13 + ®iy16% + Qp10W + ozi+22zw)]al € FQ(OQQ X DG)
i=0

where (z,w) = C%, (a,b) = Dg and «; € Fy. Now

0-(3 %)

A1 AQ Ag A4 By By B3 By
. A2 A1 A4 A3 . B2 Bl B4 B3 . .
where A = A, A A A B = B, B, B, B, |’ Ay = cir(ag, ag, az), Ay = cir(oy, as, o),
A4 Ag AQ Al B4 Bg BQ Bl
As = cir(ar, as, a9), Ay = cir(og, a11,0a2), B = rcir(ais, a1a, u5), By = reir(asg, oar, gs),

Bs = rcir(aig, g, 91) and By = rcir(aag, o, aay).
Now, o(v) = a(v)? if and only if ay = a3, a5 = ag, ag = g and a1 = aqs. Next, consider elements
of Fo(C% x Dg) of the form

{ag + asz + asw + azzw + (a + a®)(ag + auz + agw + agzw)
2
+ Z +bal(ai+13 + Q1162 + Q1 19W + OéiJrQQZU))}.
=0

It can be shown that it is not possible to construct the [24,12,8] Golay code from any element
of this set.

We summarize these results in the following: The [24,12, 8] Type II code can be constructed in
FyG precisely for the following groups of order 24: Sy, Doy, C5 x Dg, Cy x Ay and (Cg x Cy) x Cs.

3.3 The Dihedral Group

In this section, we shall describe these techniques for generating codes for the dihedral group. Let
Doy, be the dihedral group of order 2k. We describe the group by Doy = {(a,b | a®> = V* = 1,ab =
b~la). The ordering of the elements for the map o is 1,b,b%,... 0" a,ab,ab?, ..., ab* 1. It is this
group that McLoughlin used in [85] to give a construction of the binary [48, 24, 12] extremal Type II
code.
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Let v = )" aigia’?’. In this case, the matrix o(v) is of the form:

(03] Qp a2 Ce pk—1 Qg gp Agp2 ... Ogpk—1

Qlpk—1 aq Qp e Qlpk—2 Qgp Qgpz Ogpd ... (P
ap Q2 ap3 ... aq Agpk—1 Q Agp -+ Qgpk—2 (3 6)
R Qap Qg2 - .. Qgpk—1 aq ap  pz ... Qe '
Agp Qgp2 Ogp3 ... Qg Qlpk—1 aq (67 e Qpk—2

Agpk—1 Qg Agp - .. Qgpk—2 p a2 a3 e (03]

This gives that o(v) is of the form:

(5 %)

where A is a circulant matrix and B is a reverse circulant matrix.
We begin by proving a lemma.

Lemma 3.3.1 Let R be a finite commutative Frobenius ring of characteristic 2. Let C be the code
generated by a matriz M of the form
I, B
(3 7)

where B is a symmetric k by k matriz. If the free rank of C is k then C is self-dual.

Proof. Let D = ((Ix|B)) and D" = ((B|Iy)). The inner-product of the i-th row of (I;|B) and the
j-th row of (B|I}) is B;; + B;; = 0 since B;; = B;; and the characteristic is 2. Therefore D' = D+
since |D||D'| = |R|™.

The code C' = (D, D*). If D # D* then |C| > |D|. However, we are assuming that the free
rank of C' is k. Hence C' = D = D*. This gives that C is a self-dual code. [ |

In [60], Hurley proves that C, is self-dual over Fy if v € FyDyy, v* = 0 and the dimension is g
We can expand this by showing the following which eliminates the need for v to satisfy v* = 0.

Theorem 3.3.2 Let R be a finite commutative Frobenius ring of characteristic 2 and let v € RD,,
with v = Y a;h; where only one agop is 1 and the rest are 0. If C, has free rank k, then C, is a
self-dual code.

Proof. Since only one as; is 1 and the rest are 0, the generator matrix of C, is permutation
equivalent to a matrix of the form:
I, B
(5 1)

where B is a reverse circulant matrix and hence symmetric. Then, by Lemma 3.3.1, we have the
result. [ |
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To show the importance of the strengthening of this result, consider the element v =1+ ab €
Fy Doy, where k is greater than 2. Then (lep,, + ab)? # 0 but C, is a self-dual code. We continue
with a larger example.

Example 3.3.3 Consider v € FoDyg such that dim(C,) = 24 and the minimum distance of C, is
10. There are 192 elements v which produce equivalent self-dual codes using the technique.

A common technique for producing self-dual codes is to generate a code with the matrix (1 z |A)
where A is a reverse circulant matrix. Given a code C' generated by this matrix we have that Ot is
generated by (AT|I ») which is equal to (A[Iz) since A is symmetric. If C' is a self-dual code then
{:{ ;}5 ) is the code C. Consider
the first row of this matrix. Reading this as an element v € Fy Dy, we have that C' = C(v). This
gives the following:

((A[Iz)) € ((Iz]A)). This means that the code generated by (

Theorem 3.3.4 Let C be a binary self-dual code generated by (Ig A) where A is a reverse circulant

matriz then C = C(v) for some v € FyDoy,.

Applying Corollary 3.1.5, we now have,

Corollary 3.3.5 The putative [72,36,16] Type II code cannot be produced by (Iz|A) where A is a
reverse circulant matriz.

Proof. Corollary 3.1.5 gives that the [72,36, 16] Type II code is not formed from an element in a
group algebra and so Theorem 3.3.4 gives the result. [

This corollary eliminates a commonly used technique in the attempt to construct this putative
code. Namely, many computational approaches to this problem have been to construct a reverse
circulant matrix A and generate the code (Iz|A). Of course, this technique has not yet produced
the code. This corollary gives a reason why these attempts have not been successful.

3.4 The Cyclic Group Cross the Dihedral Group

In this section, we shall use the group G = C, x Doi. Let Cy = (h) and let Dy, = (a,b | a®> = b* =
1,ab = b~'a). We shall order the elements as follows:
{(1,1),(1,b), ..., (1,057, (h, 1), (h,b), ..., (h,b* 1), ... (71 1),
(R¥=L0), .o (R~ 0R ) (1, ab), . .., (1,ab*7Y), (h, 1), (h,ab), ..., (h,ab"1),
ooy (R0 (B ab), . ., (R abR )}
We see that if we choose v € RG such that only 1 of i 4045y i 1 and the rest are 0. Then we
get a matrix o(v) of the form:
I, B
B I )’
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where B is of the following form:

1A hA R*PA ... KA
R 'A 1A hA ... Rh¥TZA
hA  h*A R3A ... 1A

where h* A indicates the matrix where the i, j-th element is (h*, A; ;) and A is a reverse circulant
matrix.

Theorem 3.4.1 Let R be a Frobenius ring and let v € RCsDyy, with v = ) a;h; where only 1 of
Qi a0 18 1 and the rest are 0. Let R be a finite commutative Frobenius ring of characteristic 2. If
|C,| = |R|Z, then C,, is isodual and hence formally self-dual with respect to any weight enumerator.

Proof. We have that the code C(v) is generated by (I|B) and then its orthogonal is generated by
(BT|I},). Then we have that B is equivalent to BY. Therefore C'(v) and C(v)! are equivalent and
therefore, by Lemma 1.2.17, formally self-dual with respect to any weight enumerator. |

Note that if R is a finite field, then the condition in the previous theorem becomes that
dim(C,) = 3.
Example 3.4.2 Let G be the group CsDg. There are exactly 2'2 = 4096 elements in FoG with the
property that o g0y is equal to 1 when 1 = j = 0 and equal to 0 otherwise. Of these 256 have
dim(C,) = 12, and 192 of these codes are formally self-dual but not self-dual and 64 are self-dual.
Of the 192 formally self-dual codes, 80 have minimum distance 6 which is optimal for Type I codes.
As an example, if v = 14+a(b+b(1+b)(bh+h?)) then C,, is a formally self-dual code with minimum
distance 6. The remaining 112 formally self-dual codes have have minimum distance 4 and C,, is
an example of such a code where vo =1+ a(b* + h + b*h + h* + bh?).

Example 3.4.3 Let G be the group CyDg and consider elements of FoGG with the property that
Qi qops) 18 equal to 1 when i = j = 0 and equal to O otherwise. Of these elements, there are
2048 that have dim(C,) = 16, of these 512 are self-dual and the remaining 1536 are formally
self-dual. Let vy = 1+ a(b+ h)h, vy = 14+ a(b+ b + h + B + (b2 + b)h2 + (1 + b)h3) and
vy = 1+ a(b(1 + h) + bh2 + (b+ b)h3). The code C,, is an example of a formally self-dual with
minimum distance 4, the code C,, is an example of a formally self-dual with minimum distance
6 and the code C.,, is an example of a formally self-dual with minimum distance 8. Of the 1536
formally self-dual codes, there are 896 with minimum distance 4, 192 with minimum distance 6 and
448 with minimum distance 8.

Example 3.4.4 Let G be C5Dg and v =1+ a((u + ub + ub® + b*) + (u + b + b* + ub®)(h + h*) +
(1+b+ub®)(h*+ h*)) € RiCsDg. Then C, = (o(v),uc(v)) is a self-dual code and its image under
¢1 is a binary self-dual 80,40, 12] code with an automorphism group of order 160.
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Example 3.4.5 Let G be the group CyDog and consider the elements Fo with the properties that
Qi qops) 18 equal to 1 when i = j = 0 and equal to O otherwise. Of these elements, there are six
inequivalent self-dual [52,26,10] codes. These siz elements are as follows:

’ 7 ‘ V; G]FQ(OQDQG) ‘ |Aut(Cvl)| ‘
T{1+a((B®+0"0+b"+0"2)+ (b+ >+ 0>+ 0" +0° + 85 + % +0° + b'1)h) 52
2 14+a((d0"+0+b0+b") + (1 +0+0>+ 0> +0° + 0"+ %+ 00 +b'1)h) 52
3| 1+a((B® 4+ 4+ +0"M + 0+ (1+0+b0*+0%+0° + 0"+ 0° 4+ b')h) 52
40 14a((@+05+0"+0"0 + 0" +0"2) + (1 4+ 0>+ 0%+ b* +0° + 0" + 0°)h) 52
51 1+a((0®+b05+b0"+00+b2)+ b+ +b* +0°+ 0"+ 07+ b0+ b'1)h) 52
6| L+a((0®+b"+05+0"+b0 +0" +b02)+ (1+b+0*+0°+ 0"+ b1)h) 52

3.5 The Cyclic Case

In this section, we shall set G = C,, the cyclic group of order n. Since the inception of cyclic codes,
it has been an open question to determine which cyclic codes are self-dual. We shall describe when
this occurs.

We focus on the case when n = 2k. Let G = (h), and let h; = h'. We then use, as the ordering
of the elements of G
(h07 h?v <. 7h2k7 hla h37 ey h2k’—1)'

That is g; = hog—1) for i = 1 to k and gry; = hogj—1)41 for j =1 to k.
It follows that the form of o(v) is:

COhy Qhy T Qhyy, Ohy Qpg =t Ohyy gy
Ohyy, Chy Qg s Qhg o Qpy t 0t Qpyy g
ah4 ahg . ah2 ahg ah5 . ah1
Qhop_q Chy Tt Ohgy g Chg Qhy Qhgy,
Qhop_g Chgpy 7" gy g Oy, Ay =00 Qpyy
Ohy Qhg Tt hgy 4 Ohy 07 PR Ohy

Hence o(v) is of the form

A B
(b %)
where A, B and D are circulant matrices.
Choose an element of v such that v = Y a;h; where only one of ay; = 1 and the rest of ay; are
0. Then the generating matrix is permutation equivalent to a matrix where A is I, and B and D
are circulant matrices. Namely, we get a matrix of the form

I. B
D I )
2
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Theorem 3.5.1 Let R be a Frobenius ring of characteristic 2 and let v € RC,, with v = > a;h;
where only one ap; = 1 and the rest of awg; are 0. If vop_; = v; for odd i and |C| = |R|* then C(v)
15 a self-dual code.

Proof. By the construction, we have that o(v) is of the form

I, B
(55)
If vg,_; = v; for odd ¢ then D = BT. We have that |C| = |R|*. However, the form of the matrix
gives that C' contains a free code isomorphic to R*, namely the code generated by the matrix (I;|B).
This means that C' = ((I|B)).
Consider the code generated by the matrix (BT|I;). This code must be C*. However, this code
is contained in C(v) as well, so we have that C' = C*. |

Notice that we did not have to determine the cardinality of the code to see that the code was
self-dual. Note that it is certainly more difficult to use this technique to construct self-dual codes
with the cyclic group. That is, we had to put more restrictions on v to obtain a self-dual code. This
is certainly to be expected since it is fairly difficult to find cyclic self-dual codes.

Moreover, note that a code over R constructed with this technique is cyclic, which gives that
its image under the Gray map is quasi-cyclic of index 2F.

Example 3.5.2 Let G be the cyclic group of order 10 and v = 1 + uh + h® +uh® € R,Cyy. Then
C, = (o(v),uc(v)) is cyclic self-dual code and its image under ¢y is a binary quasi-cyclic self-dual
20, 10, 4] code of index 2.

We note that this is a standard construction of self-dual codes, namely you take a vector v
and generate a circulant matrix B from it with BBT = —I;,, with n = 2k, and generate the code
(Ix|B). Hence, we have another of the standard constructions of self-dual codes within our general
framework.

We can now use our general construction to produce isodual codes.

Theorem 3.5.3 Let R be a finite commutative Frobenius ring with characteristic 2. Let v € RC,
with v = Y a;h; where only one ag; = 1 and the rest of ag; are 0. If |C(v)| = |R|% then C(v) is a
formally self-dual code with respect to any weight enumerator.

Proof. If |C(v)| = |R|Z then C is generated by the matrix (I|B) where B is a circulant matrix.
Then its orthogonal is of the form (B”|I},). Since B is a circulant code, then by permuting the rows
and columns of B we can form BT. This gives that C'(v)* is equivalent to C'(V) and hence isodual
and therefore formally self-dual code with respect to any weight enumerator. [ |

Example 3.5.4 Let G be the cyclic group of order 6 and v = 1+ ush + (1 4+ uy +uyuz)h3 +u h® €
RyCs. Then C, = (0(v),u10(v), uquso(v)) is a cyclic formally self-dual code and its image under
¢9 is a binary quasi-cyclic self-dual [24,12,6] code of indez 4.
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Example 3.5.5 Let G be the cyclic group of order 10. The following elements of RoCho generate
four inequivalent binary self-dual [40,20, 8] codes:

|

|

‘ v; € RQClO ‘ |Aut(va)
1+ ui(h+h%) + ua(h® + 07) + W° 216. 33 . 52
L+ui(h+h%) +ua(h3+h") + (ugug + 1)A° | 2%.3.5
L+ ui(h+h%) +ug(h® + 1) + (ug + 1)A° 211.3.5
1+ ug(h+ h%) +us(h® + ") + (ug +uy + 1)h° | 21033 . 52

ot | D] | .
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Chapter 4

Constructions for Self-Dual Codes
Induced from Group Rings

Self-dual codes are a special class of codes that have connections to and applications in many fields
such as Lattices, Designs, Cryptography, Invariant Theory, etc. The natural upper bound on the
minimum distances of binary self-dual codes have led to the notion of extremal self-dual codes;
where self-dual codes have the largest possible minimum distance. There are numerous papers on
construction and classification of extremal binary self-dual codes of certain lengths. Many different
techniques have been utilized in the search for extremal binary self-dual codes. A common theme in
these methods of construction is the use of a computer search. In order to make this search feasible,
special construction methods are used in order to reduce the search field.

The double circulant construction is one of the most extensively used techniques to construct ex-
tremal binary self-dual codes. The double circulant construction assumes that the generator matrix
takes the form ([,|A) where A is a circulant matrix. If this matrix generates a self-dual code, then,
AAT = —I,. This technique was first introduced in the 1960’s ([17,76]). Since then, it has been
extensively and successfully demonstrated to find many extremal self-dual codes, ([48,49,51-53]).

In this chapter, we consider constructing self-dual codes generated by matrices of the form [I,,|o(v)]
where the image of v under o, defined in Theorem 1.1.15, is described in [60]. We show that
under certain conditions, unitary units in RG correspond to self-dual codes. Furthermore, we
find a correspondence between certain well-known techniques, namely double circulant and four
circulant, and certain well-known classes of groups, cyclic and dihedral groups, respectively. Next,
we demonstrate this construction for all groups of orders 8 and 16 over Fy, Fy 4+ ulFy and Fy + ulFy.
Following the construction of many codes of length 64, we extend certain codes to result in new
codes of length 68.

4.0.1 The General Idea

Let G be a group of order n, where the elements of the group G are assigned a label, G =
{91,92,--.,9n}. Then, for a given element of the group ring, v = ayg; + asgs + - - - + @9, € RG,
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we consider the image of v under the ¢ map described previously. Based on the structure of the
group, these n x n matrices can have special block-structures. After identifying the block structure
of o(v), we form the n x 2n matrix, [I,,|o(v)]. The code generated by this matrix will have size |R|™.
Thus, if it is self-orthogonal, then we would have obtained a self-dual code. We can summarize this
idea in the following main theorem:

Theorem 4.0.1 Let G be a group of order n and v = o191 + asgs + -+ + g, € RG be an
element of the group ring RG. The matriz [I,|o(v)] generates a self-dual code over R if and only if
o(v)o(v) = —1,.

Using the previous theorem, we can relate self-dual codes to elements in a group ring in a strong
way. To do this, recall the canonical involution * : RG — RG on a group ring RG is given by
vt = Zg aggt, for v = Zg agg € RG. If v satisfies vv* = 1, then we say that v is a unitary unit in
RG. An important connection between v* and v appears when we take their images under the o
map:

o(v*) = o(v)’. (4.1)
Now, using Theorem 4.0.1, the fact that ¢ is a ring homomorphism and that o(v) = —I, if and
only if v = —1, we get the following corollary:

Corollary 4.0.2 Let RG be a group ring, where R is a commutative Frobenius ring. For v € RG,
the matriz [1,|o(v)] generates a self-dual code over R if and only if vo* = —1. In particular, v has
to be a unit.

When we consider a ring of characteristic 2, we have —1I,, = I,,, which leads to the following
important result:

Corollary 4.0.3 Let RG be a group ring where R is a commutative Frobenius ring of characteristic
2. Then, the matriz [I,|o(v)] generates a self-dual code over R if and only if v satisfies vv* = 1,
namely v is a unitary unit in RG.

Before moving on to the construction methods arising from certain groups, we would like to
consider two special cases.

4.0.2 Two Special Cases

We would like to demonstrate, with the following examples, that many of the well-known construc-
tion methods in the literature of self-dual codes are just special cases of the idea we have described
above.

If we take G = C,, = (c), the cyclic group of order n, then for v = age + ajc + -+ + ap_1" 1,
we have o(v) is a circulant matrix. Thus the construction that is induced by the cyclic group is the
well-known double-circulant construction, that has been used frequently in constructing self-dual
codes.

If we take G = Ds,,, the dihedral group of order n and we label it as

G={ex,... TR TR ,:B”_ly},
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then the companion matrix of a typical element v € RDs, will be of the form

A B
G:|:BT AT:|7

which leads to another well-known construction in the literature of self-dual codes; when the char-
acteristic of R is 2 and we place Iy, next to G, we have the four-circulant construction.

In what follows, we will take groups of order 8 and 16 to describe the construction methods arising
from these groups for self-dual codes.

4.1 Constructions coming from groups of order 8

In this section, we will use Theorem 4.0.1 and Hurley’s map to describe the construction methods
coming from groups of order 8. Following this, the constructions will be applied to find extremal
binary self-dual codes.

4.1.1 Constructions

For the groups below, we give the structure of the companion matrix o(v) for a typical element
v € FuGG. We then take the matrices of the form [/g|o(v)] to construct binary self-dual codes of length
16. Recall that cir(ay, as, . .., a,) means the circulant matrix whose first row is (ay, as, . . . , a,,), while
rcir(ay, ag, . .., a,) means the reverse circulant matrix. Let CIR(A;, As, ..., A,) represent a block
circulant matrix whose first row of block matrices are Ay, As,..., A,. Additionally, let P, be the
n X n permutation matrix for the permutation 7 € G where n = |G|.

< Let G = (w1, 20, 23|27 = 1, m50p = mpxy (j # k) 2 C3.If

3
o = a1 + a2x1 + a3To + A4 + a5T3 + agr123 + a7Taxs + agr1Tex3 € RCS,

then
o(a) = P.® CIR(A, B) + Pu) ® CIR(C, D)

where G = {e, (1,2)}, A = cir(ay,as), B = cir(as,aq), C = cir(as, a¢), D = cir(ar, ag) and a; € R.

cLet G=(r, 1|2t =y =1 oy =yz) X Cy x Cy. If

3
a = Zaiﬂxi + a¢+5xiy € R(CQ X 04),

=0

then
o(a) =CIR(A, B)

where A = cir(ay, as, as,aq), B = cir(as, ag, a7, as) and a; € R.
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Let G=(n,y|lat=y*=1lxy=yx) X Cy x Cy. If

3

o= Z CL21+13§'i + a2i+2xiy € R(CQ X 04),
=0

then
o(a) =CIR(A,B,C, D)

where A = cir(ay, as), B = cir(as,aq), C' = cir(as, ag), D = cir(ay,ag) and a; € R.

Let G=(v,y|lzt =y =1,2¢ =27 ') 2 Dg. If
3

a = Z ;112" + ai58'y € RDs,
=0

o) = (gr ar)

where A = cir(ay, as,as,a4), B = cir(as, ag,a7,as) and a; € R. Note that this corresponds to the
four-circulant construction when char(R) = 2, as we mentioned above.

then

cLet G=(n,ylat=y*=12Y=271) =X Dg. If
3

o= Z aip1%" + aiysyx’ € RDg,
i=0

then
o(a) = CIR(A, B)

where A = cir(ay, as, as,aq), B = rcir(as, ag, az, ag) and a; € R. This second construction from Dg
will be denoted by Dj in subsequent examples.

Let G=(z,y|at=1, y*=2% 2v=a"1) Qs If
3
a = Z ai12" + aipsyr’ € RQs,

=0

-2 )

where A = cir(ay, as, as,aq), B = rcir(as, ag, az,ag), C = rcir(ay, as, as, ag) and a; € R.

then

. Let G = <x’y ’ zt = 1, yQ:xQ, ([y:{I;_1> =~ Qg If
3
a = Z ;17" + aip52"y € RQs,

i=0
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then
- (2 )

where A = cir(ay,as,a3,a4), B = cir(as,ag, az,as), C = cir(ay,ag,as,as), D = cir(ay, as, ag, as)
and a; € R. This second construction from Qg will be denoted by @5 in subsequent examples.

4.1.2 Examples of Extremal Binary Self-dual Codes obtained from the
Constructions

We will focus on the new construction methods, with double-circulant and four-circulant cases being
already done in the literature. We apply the constructions over the alphabets Fy+ulfy, Fy, R and Fs.

In [20] the possible weight enumerators for a self-dual Type I [64, 32, 12],-code were obtained in two
forms as:

Wear = 1+ (13124 168) y" + (22016 — 648) y™* +--- |14 < B < 284,
Weso = 14 (1312 +1683)y' + (23040 — 648) y™ +--- ,0 < B < 277.

Recently, 10 new codes with new weight enumerators in Wg, 2 have been constructed in [74] by
considering the Rs-lifts of the extended binary Hamming code. In [71], 15 new codes of length 64
with new weight enumerators have been constructed, and most recently in [1], 5 new codes were
found. Together with these the existence of codes is known for § =14, 16, 18, 20, 22, 24, 25, 26, 28,
29, 30, 32, 34, 35, 36, 38, 39, 44, 46, 53, 59, 60, 64 and 74 in Ws,4; and for 8 =0,..., 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 48, 50, 51, 52, 56, 58,
64, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120 and 184 in We4 .

Throughout the text extremal Type I binary self-dual codes of length 64 have weight enumerators
in We42. Hence, 3 values in the upcoming tables correspond to Wey 2. In this section, we construct
self-dual codes with weight enumerators g =0, 2, 4, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21,
24, 26, 28, 29, 30, 32, 36, 40, 44, 48 and 52 in Wi4o. Recently, codes with weight enumerators
p =13, 17, 21, 26, 29 and 52 in Wey o have been constructed in [71,74] for the first time in the
literature. We give an alternative construction for these.

The constructions emerging from groups of order 8 results in self-dual codes of length 16.

We need a brief notation for the elements of Fy + ulFy. We use the ordered basis {uw, w,u, 1} to
express the elements of Fy + ulF, as binary strings of length 4, which then are transformed into the
well-known hexadecimal notation. For instance, 1 4+ uw corresponds to 1001, which is represented
by the hexadecimal 9.

Example 4.1.1 Applying the first method of construction coming from the group Qg to the binary
field, we get the following extremal binary self-dual codes of length 16: The same codes are also
obtained from the second construction as well.

In Table 4.2, extremal binary self-dual codes of length 64 have been constructed by Dj for
F4 + UF4.
The results for the group Qs have been listed in Table 4.3.
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Table 4.1: Extremal binary self-dual codes from Qg

(a1, a9,as3,a4) | (as,aq,ar,as) | Aut (C)| Type
0,0,0,0) | (0,1,1,1) | 28x3x7 | Typell
(0,0,0,1) (1,1,1,1) 215 % 32 Type I
0,1,1,1) (1,1,1,1) |27 x32x5x7 | TypeII

Table 4.2: The construction D{ over Fy + ulFy

A B |Aut(C)| | B
(036E) | (83B0) o1 0
(0FB4) | (137E) pX 0
(2F34) | (9BD6) | 2 1
(16F1) | (4455) 25 1
(3FCT) | (4620) 2T |8
(45BF) | (C022) pX 8
(RAB1) | (B6ES) | 2¢ |12
(66FF) | (3846) % |12
(6FC1) | (3C09) 2T |16
(6FBL) | (03B0) 2T |20
(773D) | (F30B) | 2% |24
(996B) | (3408) 2% |24
(2DBE) | (1174) 2T |28
(CCDD) | (B066) 2° 28
(25B86) | (9LF4) 2T 32
(3E2D) | (B855) 2|32
(0C17) | (648B) 2T |36
(44FF) | (984E) 25 |36
(RFA8) | (B47C) | 2° |40
(CCDD) | BAEC) | 20 |44
(66F5) | (304C) | 2'x3 |44
(EG5F) | (LAC4H) % |48
(C47D) | (90E6) 2° 52




Table 4.3: The construction Qg over F, + ulF,

A B |Aut (C)| | B
(55EE) | (C522) ot 0
(5FEG) | (4F28) 91 2

(FFEE) | (CTAA) o 1
(4273) | (5E28) 23 6
(F566) | (1855) 23 8

(DBCA) | (6EBS) 25 10
(DD44) | (E588) 2T |12
(D544) | (CFSR) 2% 14
(5FC4) | (6D0A) 2T |16
(7162) | (CE10) 25 |18
(73E0) | (6418) 23 20

(FTEE) | (185F) 2% |26
(TDGE) | (45A3) 25 |28
(55EE) | (4F22) 2T |30

Table 4.4: Extremal binary self-dual codes from Cj

(a1, a9) | (as,aq) | (as,a6) | (ar,as |Aut(C)| Type
0,0) | (0,0) | (0,1) | (L1) | 2%x32x7 | Typell
(0,0) (0,1) (1,1) (1,1) 213 % 32 Type I
0,1) | D) | (L) | (L1) | 2% x3°x5x7 | Type Il

Example 4.1.2 We apply the construction method coming from C3 over the binary case, with
length 16. The results are listed in Table 4.4 and the full calculation on Magma is shown in Appendix

A.2.

Example 4.1.3 We can apply these constructions to higher lengths as well. For example, if we
take blocks of length 4 in the construction coming from C3, we can form self-dual codes of length
32. Taking A = cir(0,0,0,1), B = ¢ir(0,0,0,1), C = ¢ir(0,0,0,1) and D = cir(1,1,1,1) in C3
construction, we get the extremal Type II binary self-dual code of length 8 with automorphism group

of order 2° x 32 x 5.

The construction @ have been used for Fy + ulF4 in Table 4.5




Table 4.5: The construction Q5 over Fy + ulFy

TA B re D |Aut(C)| | B
(0577) | (B179) | (79B1) | (TFOD) 21 8
(275F) | (33F9) | (519B) | (7FO07) 23 9

(2DFF) | (9179) | (D991) | (7FSD) 2% 12
(A57D) | (33D9) | (F913) | (F72F) 2% |13
(ADDF) | (9BF3) | (FB93) | (DDAF) | _2¢ |16
(8D75) | (9BD1) | (F993) | (DFAT) 2% |17
(8F57) | (915B) | (5B31) | (F50D) 2% |21
(8F5D) | (937B) | (5911) | (7587) 2% |28
(0OTFF) | (9359) | (F913) | (FF8T7) 23 29

4.2 Constructions coming from groups of order 16

In this section, we will apply the same approach that we used in the previous section to describe
construction methods coming from groups of order 16 and to apply these construction methods to
find extremal self-dual binary codes. For the constructions in this section, we need the definition of
a so-called g-circulant matrix from [22]:

Definition 4.2.1 Let 0 < g < n. A g-circulant matriz B of order n is a matriz of the form

al a2 o« e an

Ap—g+1 ap—g+2 - Ap—g

B =g —cir(ai,as,...,a,) = | Gn-2g+1 Gn-2g4+2 " dn-2g
Ag+1 Ggt2 0 Gy

where each subscript are calculated modulo n.

Note that,each row of B is the previous row moved g places to the right.

3 3
et G=(n,y|at=yt=1 ay=yzr) =2 Cy, x Cy. fa = ZZaHiﬂjxiyj € R(Cy x Cy), then

i=0 j=0
o(a) = CIR(A, B,C, D)

where A = cir(ay, as, as,aq), B = cir(as, ag, az, as), C = cir(ag, ajp, a11, a12),
D = CZ'T(CL13, a4, a15, CL16> and a; € R.

3 3
cLet G=(r,y |2t =yt =1, zyry = 1, y2d = 2y3) 2 Guy. fa= ZZaHHMxiyj € RGy4,
i=0 j=0
then
o(la) =CIR(A,B,C, D)
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where A = cir(ay,ag,as,a4), B = 3 — cir(as,aq,a7,as), C = cir(ag,ayg,a11,a12), D = 3 —
C’LT’(Cng, ai4, 15, CL16) and a; € R.

3 3
Let G=(r,y|at=yt=1Lyr=a"ly) 2Oy xCy. Ifa= Z Z a1+i+4jxiyj € R(Cy x Cy), then
i=0 j=0
o(a) = CIR(A, B,C, D)

where A = cir(ay, as, as, aq), B = rcir(as, ag, az, ag), C = cir(ag, a9, a11, a12),
D = rcir(ass, ais, a1s, a6) and a; € R.

71
et G=(n,y|a¥=y?=1, ay=yz) 2 Cy x Cs. If a = ZZaHngxiyj € R(Cy x Cy), then
i=0 j=0
o(a) =CIR(A, B)
where A = C'L.T'((Il, Gz, as, a4, as, Gg, Ay, ag)a B = Cir(ag, a0, @11, @412, @13, A14, A15, a’lﬁ) and a; € R.
71
et G=(r,y|a¥=y*=1, ay=yz) X Cy x Cs. If a = ZZG1+2i+jxiyj € R(Cy x Cy), then
i=0 j=0
o(la) =CIR(A,B,C,D,E,F,G,H)
where A = cir(ay,a2), B = cir(as,a4), C = cir(as,ae), D = cir(ar,as), E = cir(ag,a10), F =
cir(au, alg), G = CiT(Cng, (114)7 H = cir(a15, CL16) and a; < R
71
Let G=(z,y|2a®=9y>=1, 2v =2°) X Mys. f a = Zzal+i+8jiji € RM;g, then
i=0 j=0
o(a) = CIR(A, B)

where A = C”’(al, Qg, a3, G4, a5, g, A7, as), B=3- CW(%; ai9, @11, G412, A13, A14, A15, Glﬁ) and a; € R.

cLet G=(z,y|a® =y =1La¥ =2 ) 2 Dy fa=31_, Z}:o a1+i+8;2"y’ € RDsg, then

o) = (gr ar)

where A = C'L.T'((Il, Gz, as, Gy, ds, Gg, a7, ag)a B = Cir(ag, a0, @11, @12, A13, A14, A15, a’lﬁ) and a; € R.
— 8 _ .2 _ _ -1 _\ 1 j i
Let G=(r,yla® =y’ =12y =0"") =2 Dy. fa=>_, ijo a1+it8;y’ 2" € RDsg, then

o(a) = CIR(A, B)
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where A = Cir(ad? ag, a3, a4, a5, Gg, A7, a‘S)? B = 7(,CZ'T,(a/Qa 10, A11, @12, A13, A14, G415, a16) and a; € R.
This second construction coming from Ds4 will be denoted by Di.

. Let G = (x,y|2® = y* = 1, 2Y = 23) = SDy;, the semidihedral group of order 16. If a =
ZZ:O Zjl-:[) a1+,~+8jiji € RSD16, then

o(a) = CIR(A, B)
where A = Cir(ala Gz, as, aq4, as, Gg, Ay, a8)7 B=5-— C?:T(a/g, ai10, @11, @12, A13, A14, A15, alﬁ) and a; € R.

Let G=(z,y|a®=1,y? =28 2v=271) X Q. Ifa= ZLO Z;:o a11it8;9' 2" € RQ16, then

(¢ )

where A = Cir(al, Qg, a3, G4, a5, Ag, a7, (18), B = 7“02'7”(@9, a0, A11, @12, 413, A14, A15, a16)7

C = rcir(ais, a14, ay5, a6, g, G190, a11, G12) and a; € R.

cLet G = (myy,z | 2t =9y =22 = Loy = yr, 22 = 2o, yz = 2y) = Cy x Cy x Cy. If
3 .

o = Zi:o ZEZ(CLH_l + ai15Y + Aj492 + ai+13yz) S R(C4 X 02 X CQ), then

o(e) = P, ® CIR(A, B) + Py 2 ® CIR(C, D)

where G = {e, (1,2)}, A = cir(ay, as,a3,a4), B = cir(as, ag, ar, ag), C = cir(ag, aig, a11, ai2),

D= CiT’((]J13, a4, d15, CL16> and a; € R.

cLet G = (my,z | 2t =9y =22 = 1oy =y, 22 = zx, yz = 2y) = Cy x Cy x Cy. If
o = Z?:O $‘Z(CL1+4Z‘ + a24+4;Y + a3+44i% + a4+4,~yz) S R(C4 X 02 X CQ), then

o(a) = CIR(A, B,C, D)

where A = CIR(Al,Ag), B = C]R(Bl7BQ>, C = CIR(Cl,CQ), D = CIR(Dl,D2)7 Al =
cir(ay, as), Ay = cir(as,aq), By = cir(as, ag), By = cir(ay,ag), C1 = cir(ag, a10), Co = cir(ai, ais),
D1 = cir(alg, 0,14), DQ = cz’r(a15, CL16) and a; € R.

1

Let G=(r,y, 2|zt =y*=22=1,2v =2 oz = zz,yz = 2y) X Cy x Dg. If

3

o= Zmi(aiﬂ + QigpsY + Gipoz + aip13y2) € R(Cy x Dy),
i=0

then

A B C D

BT AT DT (CT

C D A B

DT CT BT AT
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where A = CiT(al, ag, as, CL4), B = Cir<a/57 Qe, A7, a‘8)7 C= Cir<a’97 aio, 11, a12)7 D = Cir<a137 14, A15, a16)
and q; € R.

cLet G=(n,y, 2|2t =y =22 =1,2v =2 Y oz = za,yz = 2y) 2 Cy x Dg. If

3
o= Z(ai-i-l + aiy5Y + Qive? + aip13y2)x’ € R(Cy x Dy),
i=0
then
o(a) = P, ® CIR(A, B) + Py ® CIR(C, D)

where G = {e, (1,2)}, A = cir(ay, aq, a3, a4), B = rcir(as, ag, ar, ag), C = cir(ag, aig, a11, ai2),
D = rcir(ays, aia, a5, a16) and a; € R.

2 1

et G=(n,y,z |2t =22=1, Y2 =22 ¥ =2 oz =20, yz = 2y) = Cy x Qg. If

3

o= Z(ai-i—l + ai5Y + Qive? + aip13y2)x’ € R(Cy x Qg),
i=0

then

ola) =

O Qe
Qxm=mT
S Bwiics

B
A
E
D

where A = cir(ay, as, as, aq), B = rcir(as, ag, az, ag), C = rcir(ay, as, as, ag),
D = cir(ag, ayo, a11, a12), E = rcir(as, aia, @15, a16), F = reir(ass, asg, ar3, a14) and a; € R.

cLet G=(n,y, 2|2t =22=1, y? =2*

, ¥ =alar = 2m, yz = 2y) 2Oy x Qg If
3

o= Z (i1 + Qivsy + Qivo? + air13y2) € R(Co X Qs),

i=0
then
A B D FE
o(a) = C AT F DT
D E A B
F DT ¢ AT

where A = CZ"T’((Il, ag, as, CL4), B = CiT((Z5, ag, ry, CLg), C = CZ"F((Z7, ag, as, CLS), D = C?:T(Cbg, aijop, a11, CL12),
E = cir(as, a14, a1s, a16), F = cir(ass, a4, a13,a16) and a; € R. This second construction coming

from Cy x Qg will be denoted by (Cy x Qg)".
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cLet G = (r,y,z | 2t =2 =22 =1, zyza’y = 1, yoya® = 1, zazza® = 1) & P, If a =
Z?:o 2 (@ip1 + QitsY + Qivoz + aiy13y2) € RPig, then

A B

ola) =

oo QA
SRS

B A
C D
E F

where A = cir(ay, as, as, aq), B = cir(as, ag, az, as), C = cir(ag, ajp, a11, a1a),
D = CW’(G13, 14, A15, a16>7 E= CZ?”(G157 16, A13, CL14), F= CZT’(CLH, a2, ay, alo) and a; € R.

< Let G = (z;|2? = 1, ziz; = xja; (i #£ 1)) =2 Cy where 1 <4,j < 4. If

o = aj + asx1 + azxo + a4x1x9 + as5x3 + Agr1x3 + A7r9x3 + AgT1 LT3 + A9y + A10L1T4

+ a1122T4 + Q12212224 + A13T3T4 + A14T1T3X4 + A15T2T3L4 + A16T1T2T3T4 € RC%
then
O'(Oé) = Pe ® C]R(A, B) + P(172)(374) ® CIR(C, D) + P(173)(274) ® CIR(E, F) + P(1’4)(273) ® CIR(G, H)

where G = {e, (1,2)(3,4),(1,3)(2,4), (1,4)(2,3)}, A = cir(ay,a2), B = cir(as,aq), C = cir(as, ag),
D = cir(az, ag), E = cir(ag, ay0), F' = cir(ay1,a12), G = cir(ais, a14), H = cir(as5,a16) and a; € R.

4.2.1 Examples of Extremal Binary Self-dual Codes obtained from the
constructions

In this section, we give examples obtained from group of order 16. The construction is applied over
the binary alphabet and to the ring R;. Using g-circulant matrices to construct self-dual codes is
a distinctive method. In the following example we use the construction SD.4. Note that, here we
present a new way of constructing codes. Using this construction means that we can extend these
codes to produces new codes in the following section.

Example 4.2.2 Applying the semidihedral construction to the binary case length 32, up to equiv-
alence, we get one extremal binary self-dual code of length 32 and one binary self-dual code of
parameter [32,16,6]. Lifting these to the ring Ry, in other words, applying the semidihedral con-
struction to the ring Ry we get the following results:

Lifts of [32,16,6]: Up to equivalence we get 14 extremal binary self-dual codes of length 64. Out
of these, 11 are of Type II. The three Type I codes have two different weight enumerators. If we
take

((1/1, az, as, a4, as, g, A7, CLg) = (U,, u, 07 07 07 ]-7 u, ]-)
and
(ag, aio, ai1, a1z, a3, aua, a1s, are) = (u,0,u,0,1, 1,1, u),
then the code obtained with the semidhedral construction over Ry with these values has as its Gray

image, a Type I extremal binary self-dual code that has a weight enumerator with 8 =0 in W .
46



Table 4.6: The constructions D}z and SDqg over Fy + ulFy

Construction A B |Aut(C)| | B
DI, (22221113) | (22130131) | 20 0

D (22201111) | (02130311) | 20 | 16

Dl (22001113) | (20132111) | 2 | 32

Dl (22001131) | (22110133) | 2° | 48
SDis (00332312) | (23331102) | 28 | 32

If we take
(ala a2, as, a4, as, g, Az, aS) - (U7 u,u, Oa 07 17 07 1)

and
(a9> 10, d11, G412, 13, A14, A15, 016) = (U> 0,u,u,1,1,1, O)a

then we get a code with the same weight enumerator(5 =0 in Wes2.)
If we take

(ala G2, as, a4, as, g, Az, aS) = (u7 u,u, Oa O) 17 07 ]-)

and
((19, aip, a11, A12, A13, A14, A15, alG) = (U, 07 u, 07 17 1a 17 U),

then we get a Type I extremal binary self-dual code that has a weight enumerator with § = 16 in
Wea,2-

Lifts of [32,16,8]: Up to equivalence we get 13 extremal binary self-dual codes, of which 12 are
Type II and the one Type I code has a weight enumerator with B = 16 in Wsys.

The constructions G4 4 and Mg use 3-circulant and 5-circulant matrices, respectively. When
these are applied over the binary alphabet we obtain self-dual binary codes of length 32. Those are
not listed in order to save space.

In order to simplify the notation in tables we use 2 and 3 for u and 1 + u, respectively. When
we apply the constructions D/, and SDi4 over Fy 4+ ulFy we obtain extremal binary self-dual codes
of length 64 as binary images. Those are listed in Table 4.6.

In Tables 4.7, 4.8 and 4.9 we apply the constructions Q14, C2Qs, P and (C2Qsg)’, respectively.

4.3 New Extremal binary self-dual codes of length 68

We will now explain how we find new extremal binary self-dual codes of length 68 by combining
the construction methods in sections 4 and 5 and an extension theorem. We first recall that, he
possible weight enumerators of an extremal self-dual binary code of length 68 are determined in
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Table 4.7: The construction Q14 over Fy + ulFy

rA B re [Aut(C)| | B
(20131120) | (11023321) | (00112232) 21 0
(03003112) | (21103301) | (02311020) | 2 0
(10110221) | (33231212) | (22320303) | 2* | 12
(01221112) | (21323321) | (20313222) | 2* |16
(10130021) | (31231032) | (00122103) 27 20
(23021312) | (01121303) | (22333022) 2o 32
(21223310) | (21103303) | (00331220) | 2° | 32
(32110203) | (13013012) | (22300123) | 2° | 36

Table 4.8: Codes by CsQ)g and Pyg over Fy + ulfy

Construction T rp ro D rE rp |Aut (C)| | B
C>Qs (1213) | (2331) | (3123) | (0021) | (1230) | (0220) | 2 8
Qs (1233) | (0311) | (1301) | (0003) | (3032) | (0200) | 2% |24
CsQs (2221) | (3210) | (2301) | (3312) | (0221) | (1330) | 2° |24
CoQs (2001) | (1032) | (2103) | (1310) | (2003) | (1132) | 2% |40

Pre (2010) | (0320) | (3103) | (1230) | (3311) | (3301) | 2% | 8

Pro (2310) | (0220) | (3320) | (1123) | (1231) | (2011) | 2° 8

Pro (3021) | (1331) | (0211) | (0223) | (3022) | (3302) |  2° 8

Pro (0212) | (0322) | (3123) | (3212) | (1333) | (3321) | 2* |24

Prs (3223) | (3113) | (0031) | (2003) | (1220) | (1300) | 2° | 24

Table 4.9: Type I extremal self-dual binary codes of length 64 via (C2Qs)’

TA B rc D T TR rG TH |Aut(C’)| 15}
(1331) | (0033) | (0330) | (0220) | (0023) | (0233) | (0332) | (3013) | 2 8
(1331) | (2013) | (2130) | (0220) | (2003) | (0013) | (0130) | (3011) | 2 | 24
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28] as follows:

West = 1+ (4424 48) y™ + (10864 — 88) y™* + -, 104 < B < 1358,
Weso = 1+ (4424 48) y™ + (14960 — 83 — 2567) y™* + . ..

where 0 < 7 < 9 by [56]. The existence of codes is known for many parameters for both of the
cases. In Wys o codes exist for v =0,1,2,3,4 and 6. For a list of known codes in Wys o we refer to
[72]. In order to save space, we list only the parameters for v = 4 in Wpg o, which is;

gelom 43,48,49,51, 52, 54, 55, 56, 58, 60, 61, 62,
64,65,67,...,71,75,...,88,90,97,98

In this section, we obtain 10 new extremal binary self-dual codes of length 68. More precisely,
we construct codes whose weight enumerators have v = 4 and g =126, 129, 132, 141, 144, 145, 146,
148, 157 and 161 in W6872.

In order to construct new codes of length 68 we use the following Theorem 1.2.27 over Fy 4 ulF,.

By using groups of order 8 we obtain codes of length 16 over F4 + ulF, with binary images as
64, 32, 12], self-dual codes. We map the codes to the ring Fy + uF, via the Gray map g, ., and
extend the Fy + ulFo-image. Consider the following codes over Fy + ulFy:

C; | Construction N B B in Weao | |Aut (C;)|
C, Ds (6EDT7) | (D40A) 21 2
Cs Dy’ (2DBE) | (1174) 23 o

We now extend these codes to find new codes of length 68. The new codes are tabulated in Table
4.10. In order to save space the element 1+ u of Fy 4 ulF5 is denoted by 3 in the extension vector X.
Thus we have the following main theorem about the existence of extremal binary self-dual codes of
length 68.

Theorem 4.3.1 Together with the codes in Table 4.10 the existence of extremal self-dual binary
codes is known for 46 parameters with v = 4 in Ws ».
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Table 4.10: Ten new extremal self-dual codes of length 68 with v = 4

CGS’Z' Cj Cc X 6

Cesa | C1 | 1+ u | (u3luuluuuluu0u303u3033333011uudu) | 126

Ces2 | Ca 1 (300u11331003111303331101.0301110w) | 129

Cess | C1 | 1 +u | (u33u000000uu0u30303013311ulluudu) || 132

Cess | C1 | 1+ u | (033uvuuu000uuu3ul03ul3331013u030) || 144

Cess | Ca 1 (1uu011313u01u331033333u0u3dul31u0) || 145

Cess | C1 1 (011u0uuu0uOuu03u303031111033uulu) || 146

Ces7 | C1 1 0130uuu0000100303110113111131w010 148

Ceso | C2 | 1 4+u | (1u00131330u3ul31u313310u0303310u 157

( )
Coss | Co | 1+ u | (3uu011331003u113u31131u0u30313uu) | 155

( )

(

Ceso | Co | 1 +u | (lunu33133u03ul33ul3313uludull30u) || 161

20



Chapter 5

Double Bordered Constructions for
Self-Dual Codes Induced from Group
Rings

In previous chapters, we have discussed the double circulant construction as a technique for con-
structing self-dual codes over a ring R, from a generator matrix of the form (/| A) where A is an
n X n circulant matrix over R. As previously mentioned, the double circulant construction is one of
the most extensively used techniques for producing self-dual codes. This technique can be modified
to a bordered-double circulant construction by considering generator matrices of the form ([59,67]):

where «, f € R. We can think of this technique as essentially extending a self-dual code of 2n to a
self-dual code of length 2n + 2. In [50], new self-dual codes of length 2n + 2 were constructed using
the following construction

1 0‘21 zn‘znﬂ ... Zon
i
Do I A
Yn  Yn
where 2 = (21,...,22,) € R*™, y; = r; and r; is the i row of the generator matrix (I | A) and A is

an n X n circulant matrix over a ring R. Additionally, in [9], self-dual codes of length 2n + 2 were
constructed from the following generator matrix:

o1



1 - x|0 - 01 0

T I1

1 A

Tn  Tn

where z; € R and A is an n x n circulant matrix over a ring R. In [55], self-dual codes of length
2n + 4 were constructed from generator matrices of the form:

1 0 0 0| ax;
1 0 O T2
n 1
Yn T'n

where x; are vectors of length 2n, y; are vectors of length 4, r; is the i row of the genertor matrix
(I|A) and A is an n X n circulant matrix over a ring R.

In [27], the authors combine a bordered double-circulant construction and group rings to con-
struct self-dual codes from the construction:

71‘041 041‘72‘062 s Qg
651 &%)

I, : o(v)
aq %)

Considering techniques previously used and the success from each method, a logical question
would be whether these techniques can be extended and/or combined to construct more self-dual
codes. In this chapter, we consider constructing self-dual codes from the following generator matrix:

[\ Qig|Qug - -+ Qg Qg -+ - Q|5 QglQuy -+ Q7 Qg - - - Q]
Qo |y -+ Qg g -+ Qglag Qslag -+ ag Q7 -+ Q7
a3 Qy a7 Qg
a3 Qy a7 Qg

I o(v)
Qq Q3 Qg Qp
[(q4 O3 ag Q7

This chapter is organised as follows: The first section describes cyclic and dihedral groups using a
different listing of elements. The corresponding structure of o(v) is also given here. In Section 2, we
consider the new double bordered construction and look at the theory surrounding its effectiveness.
We specify conditions on the construction in order to maximise its practicality and effectiveness.
The final sections are allocated to the results, computed using MAGMA ([5]) and proving the
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efficiency of the theory. The new extremal binary self-dual codes are listed in numerous tables and
summarised in the final section. Notably, this research includes new self-dual codes of length 64,
68 and 80.

5.1 Notation

The two main groups that we use in this chapter are cyclic and dihedral groups. For these groups,
we consider circulant n X n matrices denoted cir(aq, as, -+ , ay,), where each row vector is rotated
one element to the right relative to the preceding row vector [22]. Furthermore, the notation
CIR(Ay, Ay, -+, Apn) denotes the nm x nm circulant matrix constructed of m smaller n x n cir-
culant matrices, A;. We will now look at the structure of the matrix o(v) where v is an element of
the cyclic or dihedral group of order 2p where p is an odd integer.

Recall that Cj, =

(x| 2% =1) and

—_

3

1
2i+7 /
E Qipjr17- 7 € RCy,

1§
o

i 7=0

then,

- (3

ajp) and A’

where A; = cir(a(_1)p+1, AG-1)pt2, - - -

Alternatively, let Dy, = (z,y | 27 = y* = 1,2v =y~

—_

p—

I
o

% 7=0

then,

o=

where A; = cir(Q(_1)pt1; XG—1)p+2, - - - > Wjp).

5.2 Construction

Let v € RG where R is a finite Frobenius ring of characteristic 2 and G is a finite group of order

2p where p is odd. Define the following matrix:

93

= cir(Qp, QG—1)p+1s - - -

Ay
Ay

, Qjp—1)-

1) and

1
Y Qipraa'y’ € RDy,

As

i)



[y ag|ag -+ a3 a4 -+ oagl|las aglay - ay ag --- ag]
g oy - g ag --- agz|lag as|lag - ag Q... Qr
Q3 Oy Q7 Qg

M(o) =
a3 Oy Q7 Qg
IZp U(”)

Qg O3 Qg Q7

| Qg Q3 ag a7 _

where a; € R. Let C, be a code that is generated by the matrix M (o). Then, the code C, has
length 4p + 4. Throughout this paper, we assume that G is a group of order 2p that contains a
subgroup of order p where p is odd. If we fix a listing of G where the first p elements of G are the
elements of H, then o(v) takes a certain form. The next result states the form that o(v) takes in
this case. It also provides an important property that enables us to prove our main result.

Lemma 5.2.1 Let R be a commutative ring. If H = {g1,2,....9p} is a subgroup of the finite
group G ={g1,92, - -, 9p, Gpt1, - - -, G2p} of order 2p (p is odd), then

M, | M,
U(U): Mé M{ )

where My, My are p X p matrices, M/ is permutation similar to My and M} is permutation to M.

Moreover
1 1 1 1 ke

M=M= || =M |:|=]:] (k=12)
1 1 1 1 m

where i = 3 ag, 2= 3 oy,
geH geG\H

Proof. Clearly, M; = (O‘gi‘lgj)i,j=1,-..,pv M, = <O‘g;1g,]+j)i,j=1,-~7p M) = (Oégp_-&igj>i’j:17”"p and M| =
(ozg;igpﬂ)i,j:lwp. Let a € G\H. Then, for any 1 < i < p, gp4; € aH and g,y; = ags;) for some
1 <4(i) < p. Moreover ¢ : i — §(7) is a permutation of degree p and

M| = (a,

gy )id=1ep = (Uagsy)ags(y) )ig=1,.p =

If we rearrange the rows and columns of the matrix M; = (a -1, )i j=1,.., in the order §(1),...4(p)
we will obtain Mj. So, M, is permutation similar to M.
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It is well known that group G of order 2p contains a subgroup of order 2. So there is a € G
a # eq, a®> = eq. Thus |H| = p, a ¢ H. Again, let g,4; = ags() for some 1 < 6(i) < p. Moreover,
0 i — 6(7) is a permutation of degree p and

M, = (Oégi—lgpﬂ)i,j:l,...,p = (Oégi_lagé(j))i,j=1,“.,p7

.p in the order §(1),...4(p) and
if we rearrange the its columns in the order 671(1),...57!(p) we will obtain

Now, if we rearrange the rows of the matrix My = (Oégflagﬂv))ij:l ,
i 3 ’

!
o -1 i = (o, -1 )iz = M,.
( gé(i)agw,l(j)))w 1,...p ( gé(i)agj)%] 1...p 2

This implies that SMyS = M} for a permutation matrix S, which contains ones in positions (¢, 4(%))
(i=1,...,p) or, which is the same, in positions (671(5),5) (j =1,...,p).
1
Now, the i-th element of column M, | : ] is
i

P

—1
Zagflgjzzagflgzzag:lﬁla g, € H g~ €M,
j=1

geH geH

1
and the i-th element of column M < : ) is
i

p
Zag{lgi - Zay*lgi = Zaggi = Zag =, ¢; € H.
j=1

geH geH geH
Thus,
1 1 1
My sl =MI|:]=]|:],
1 1 M1

1 1
since we have S ( : ) = ( : ) for any permutation matrix S, and M, is permutation similar to M.

i i
Furthermore,

1 1 M1
M=M=
1 1 M1
1 1
Now, the i-th elements of columns M, ( ) and M ( ) respectively, are
i i
p

Zay{lgpﬂ - Z Qgrlg = Z Qg = H2,

J=1 geEG\H geG\H
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p

D Ohe = D Ote = D Gu = D 0=,
j=1

geG\H geG\H geG\H

where g; € H and g; ' € H.
Thus,
1 1 H2
My| ] =My | f=]:
1 1 2
1 1
Therefore, we have SM;S = M for some permutation matrix S, S ( : ) = ( : ) , and

1 1 H2
My =Myt ] =]
1 1 H2

We can now state and prove our main result.

Theorem 5.2.2 Let R be a finite commutative Frobenius ring of characteristic 2. Let G = {g1, g2, - - -, Gps Gp+1,
be a finite group of order 2p and H = {g1, 92, ..., 9} be a subgroup of group G. Then, C, is a self-
dual code of length 4p + 4 if and only if

o Yiai=0,

o vt =1+ 37 (a7, +03,6).

o (a; + lag + asay + (a5 + p1)ar + (ag + pe)ag = 0,

o (ay + 1)ay + asas + (a5 + p)ag + (g + p2)ar = 0 and

[e +a2+a2 [o% astazartagag agtasagtasar artpuias+usas ag+uias+psa
° 1 3 1 22 , 5 3Q7 8 Q6 308 4007 Q7T H1O3TH2 8 TH1 H20a3 hCLS free ’I“Cl,’flk 9
[e%) aitaztoy agtazagtasar astazartogag agt+piraatpaas art+pioztpuzog

where g = Zle Gis 1= Y ag and piz = > Qg-
geH geG\H

Proof. Let M(o) = ﬁé éi ﬁ% ;(13) where A; = circ(aq, ag), Ay = CIRC(By, Bs), Az =

CiI‘C(Oél,OéQ), A4 = CIRC(Bg,B4), Bl = (063, ceey 063) S R;IJ? BQ = (044, R ,064) € Rp, B3 =
(avz,...,c7) € RP and By = (as,...,as) € RP. Then
ALAT + AJAT + A3AT + AJAT  Aj Ay + Ay + A3Ay + Ayo(v)T
ATAT + AT + ATAT + o(0)AT ATAy + I, + ATA, + o(v)o(v)T )
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Now,

2
A AT + A, AT + A3 AT + AL AT = circ (Z(a + Pl + Qg+ PAiig), ) = circ (Z oz, 0)

i=1
and
2
AT Ay + Iy + AT Ay + o(v)o(v)” = z:(o&r2 +a?,6)CIRC(A, 0) + I, + o (vv”)
i=1
where A = circ(1,...,1) and 0 = circ(0,...,0). It follows from Lemma 5.2.1 that
—— ——
p—times p—times
a7 ag HiQ7t+p208 p1agt+p207
o(v)Af = ( Mz M? ) alay | = | Mmartmes moastimar | = CIRC((luartpsas)e, (las+hsar)c)
028 04'7 mozs—i-mow #1047‘;‘#2048
1
where ¢ = | : |. Additionally,
1

ATAT + AL + AT AT + o(v) AT =CIRC((aya3 + asay)c, (aay + azas)e) + CIRC(aze, aye)
+ CIRC((asar + agag)c, (asas + agar)c)
—+ CIRC((/“OW + ,ILQOCg)C, (ulag + M2067)C)

= CIRC(((e1 + 1)az + agay + (a5 + p1)ar + (ag + po)as)e, (a1 + 1)ag + asaz + (a5 + p1)as + (ag + pa)ar)c)

Clearly, M ()M ()T is a symmetric matrix and C, is self orthogonal if 325 a? = 0, vv* =
2 A
1 + Zz’: ( z+2 + az+6 g,

(o + D)ag + agay + (a5 + 1) ar + (g + p2)ag =0 and
(a1 + D)oy + asas + (a5 + p1)ag + (ag + p2)ar =0.

Moreover,
aq a2 Q3 0 a3 g Q4 as a6 Q7 0 Qg ot Ay
a2 aq Qg 0 Qg a3 - Q3 ag as ag - oag ar oy
a3 oy a7 ag
rank(M(o)) =rank | 5 . I ar o
ay s 2p asg (a4 O'(U)
024 023 06'8 06'7
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ai+al aztazas | az - a3 oq - g4 | astazar  astasag | ar - ar ag - og
astagas a1+a421 Qg 0 Q4 3 -+ Q3 agtagar ast+aqas ag g a7 Ay
0 0 0
= rank o 0 I o o
ay as 2p as ar U(U)
d4 Oé.g C¥.8 04.7
ar+aZ+a? @2 | @3 a3z aq - as | astagartosas  astazagtasar | a7 oo oo ag -oag
a9 altaitoy Qg - Qg 3 Q3 agt+azagtagar astaszartasag ag --oag ar coQar
0 0 0 0
= rank : : : :
0 0 0 0
0 0 Iop 0 0 o(v)
0 0 0 0
art+aj+a; Y2 10 00y - aglastazartasag agtazagtagar | artpias o artpias Qgtp2az o Qgtp2as
ay  aitaz+aoy |0 - 0 a3 - a3 |asgtagagtagar astagartagas | ag+pioy - agt+pioy artpaoy o artpaog
0 0
= rank 8 8 ]_2 8 8 Ml M2
D !/ /
M, | My
0 0 0 0
cai+ad+al 2 10 .. 0|astazartasos astagagtasar [y 192 o 72
as  aitazta; |0 ... 0| asgtazagtasar astagzartagag [Y2 0 Y2 71 0 1
0 0 0 0
4 / /
M | M
0 0 0 0

where v, = ay + pras + peay and o = ag + pyay + peas. Therefore M (o) has free rank 2p 4 2
if and only if:

ar+aZ+a? as+azartasog agtaszagtogar artpios+pzas ag+pos+psos
(o) a1+a§+aﬁ aptaszagtoasar astazartasag agtpiaatp2o3 art+pio3+u204

has free rank 2. [ |

The next two results provide conditions when units/non units in RG can be used to be used to
yield self-dual codes using the above construction.

Corollary 5.2.3 Let R be a finite commutative Frobenius ring of characteristic 2, let G be a finite
group of order 2p where p is odd, and let C, be a self-dual code. If Zle(aiﬂ + air6) = 0 then
v € RG is a unit.

Proof. If Zle(aiﬂ + a;t6) = 0, then o(vv*) = Iy, and vv* = 1. Therefore v is unitary. [ |

Corollary 5.2.4 Let R be a finite commutative Frobenius ring of characteristic 2, let G be a finite
group of order 2p where p is odd, and let C, be a self-dual code. If 2?21(061'+2 + airg) = 1 then
v € RG is a non-unit.
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Proof. If 327 (@19 + @ir6) = 1, then

2

> (0, + af,5)CIRC(A, 0) + I, + o(v0*) = CIRC(A, 0) + o(vv*) = 0

=1

where A = circ(0, 1,...,1 ) and 0 = circ(0,...,0). Now det(CIRC(A,0)) = det(A)? and
——

——
(p—1)—times

R )
S s R

det(A) = det

11

e g

1

—times

'H}—‘P—‘»ﬁ

= (p—1)det

0

1
0
0

000

1
1
0

1
0
1

O O =

Therefore, det(o(vv*)) = 0 and vv* is a non-unit by Corollary 3 in [60]. Hence, v € RG is a

non-unit.

Now, we will construct self-dual codes of various lengths (64, 68, 80) using groups of order 6,

14, 18, 30 and 38.

5.2.1 Constructions coming from Dy

In this section, we implement the above construction using G = Dg. We construct self-dual codes
of length 64 by considering this construction over F, + ulF,. Using this construction, we were able

to construct one new code of length 64.

The possible weight enumerators for a self-dual Type I [64, 32, 12]-code is given in [20,28] as:

Weir = 1+ (13124 1683) y'* + (22016 — 648) y'* + - -
Weao = 1+ (1312 +168) ™ + (23040 — 643) y** + - -

L 0< B <277,

With the most updated information, the existence of codes is known for g =14, 18, 22, 25, 29, 32,
35, 36, 39, 44, 46, 53, 59, 60, 64 and 74 in Wg; and for g =0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14,
16, ..., 25, 28, 19, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 50, 51, 52, 56, 58, 64, 72, 80, 88,
96, 104, 108, 112, 114, 118, 120 and 184 in Wy, 5. The new code that we have constructed is § = 57

in W6472.

Table 5.1: Self-dual code of length 64 from Dg over Fy + ulFy.

A (01,08 (a1, a5)  [Aut(A)] Type
1 (0,B,2,A,2,4,1,4) (A,1,3,2,B,7) 2.3 B =57 (Wsso)
2 (0,1,0,0,0,2,6,7) (0,B,B,3,6,7) 2*.3  3=064 (Ws2)

29



5.2.2 Constructions coming from groups of order 14

Here we present the results for the above construction using G € { D14, C14}. We construct self-dual
codes of length 64 by considering this construction over Fy + ulFs.

Table 5.2: Self-dual codes of length 64 from D4 over Fy + ulFs.
B:  (aq,a9,...,03) (ay,ag,...,a14) |Aut(C)| Type
1 (u,1,u,u,0,0,u,1) (u,u,0,u,u,1,1,0,0,1,3,0,3,1) 25-7  B=46 (Wey)
2 (u,1l,u,u,0,0,u,1) (u,u,0,0,0,1,1,u,0,1,1,u,1,1) 22.7  B3=060 (Wey1)

Table 5.3: Self-dual codes of length 64 from C, over R;.
Ci  (aq,am,...,03) (ay,ag,...,a14) | Aut(C)] Type
1 (u,1,u,u,0,0,u,1) (u,0,0,0,u,1,1,1,0,0,1,1,0,1)  23-7 B =46 (Ws4,)

5.2.3 Constructions coming from a groups of order 18

Now, we implement the above construction using G € {D1g,C13}. We construct self-dual codes of
length 80 by considering this construction over Fy + uFs. In [101], the possible weight enumerators
for a self-dual Type I [80,40, 14]-code is given in as:

Weoo = 14 (3200 + 4a) y™* + (47645 — 8a + 2563) y' + - - - |

where « and ( are integers. A [80,40, 14] code was constructed in [23], however its weight enumerator
was not stated. A [80,40, 14] code was constructed in [54] with o = —280, 5 = 10 and [80, 40, 14]
codes were constructed for f = 0 and o = —17k where k € {2,...,25,27} in [101]. None of the

codes presented here have been previously constructed.

Table 5.4: Self-dual codes of length 80 from D;g over Fy + ulFy where (ay,...,ag) =
(u, 1, u,u,0,0,u,1)

D; (a1,...,a9) (@10, - - -, a18) |Aut(C})| Type

T (w0u1,1,1,1,1,1) (wul,301,1,1,3) 22:3° a=-229, 3 =18 (Ws2)
2 (u,u,u,0,1,1,3,3,1) (0,0,1,1,3,u,0,3,1) 22-32 o= —256, f =18 (Ws2)
3 (0,u,0,0,4,0,0,1,1) (0,0,1,3,1,0,3,3,3) 2237 = 274, =18 (Ws2)
1 (0,1,0,0,0,0,0,1,3) (6,0,1,1,1,0,3,3,3) 22-3° a=—310, 3 =18 (Wx2)
5 (0,0,0,1,1,3,3,3,3) (w,u1,1,0,1,3,1,3) 22-3° «——355, 3 =18 (Wx2)
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5.2.4 Constructions coming from Dsg

In this section, we implement the construction on G = D3g. We construct self-dual codes of length
80 by considering this construction over Fy. The full calculation on Magma is shown in Appendix

A.3.

Table 5.5: Self-dual codes of length 80 from Dsg over Fy where (aq,...,as) = (0,1,0,0,1,1,0,1)

E; (a1, .., a1g) (ago, - - -, ass) |Aut(C})| Type

1 (0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1) (0,0,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,1,1) 2-19 a=—211, 3 = 18 (Ws2)
2 (0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1,1,1) (0,0,0,0,1,0,1,0,1,0,0,1,1,0,0,0,0,1,1)  2-19 & = —249, 5 = 18 (Wxo.)
3 (0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1) (0,0,0,0,1,1,1,0,1,0,0,0,1,0,1,0,1,1,1)  2-19 & = —287, = 18 (Wso2)
4 (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1)  (0,0,0,0,0,0,1,0,1,0,0,1,1,0,0,1,0,1,1) 2-19 a=—306, =18 (Ws2)
5 (0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1) (0,0,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,1) 22-19 & = —325, = 18 (Wao.)
5 (0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1) (0,0,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1,1) 2-19 a——3633—18(VV80,2)
7 (0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,0,1,1) (0,0,0,1,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1) 22-19 & = —401, 3 = 18 (Wso2)

5.3 New Codes of Length 68

In this section, we implement Theorem 1.2.27 to construct new extremal self-dual codes. We extend
the codes previously constructed in Tables 5.2.1, 5.2.2 and 5.2.2.

The known weight enumerators of a self-dual [68, 34, 12];-code are as follows:

Wes.1
Wes,2

1+ (442 + 48)y™ + (10864 — 83)y™*
1+ (442 + 48)y* + (14960 — 8 — 2567)y™

where 0 < < 9. Codes have been obtained for Wsg o when

v = 2, fe{2m|m=29,...,100,103,104} or S € {2m+1|m =32,34,...,79};
v = 3, f€{2m|m =40,...,98,101,102} or
B € {2m+1|m =41,43,...,77,79,80,83,96} ;
v = 4,8 €{2m|m =43,44,48,...,92,97,98} or
g € {2m+1|m=48,...,55,58,60,...,78,80,83,84,85};
v = 5 with § € {m|m = 113,116,...,181};
Recall that the codes constructed in Tables 5.2.1, 5.2.2 and 5.2.2 are codes over F, + ulF,.

Consequently, we converted these codes to codes over Fy + uFy (using the Gray map U, +uIF4)
before applying Theorem 1.2.27. The following table displays the newly constructed extremal codes
of length 68. We replace u + 1 with 3 to save space.

Two self-dual binary codes of dimension k are said to be neighbours if their intersection has
dimension k — 1. We consider the standard form of the generator matrix of C' to reduce the search

field. Let x € Fy — C then D = <<Jc>L NnC, x> is a neighbour of C'. Without loss of generality, the
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Table 5.6: Self-dual codes of length 68 from extending [64, 32, 12];

CG&i Code C X vy ﬁ
Cesp Bi  u+1 (3,u,0,4,0,3,u,u,1,0,u,3,0,1,u,1,1,1,u,u,u,u,u,1,u,u,0,0,1,u,0,3) 2 161
Cosz  Bi utl (03,u13u1,0,0,1,3u0,u5u1,0,1,3101,3u0330,0,0,u41,3) 2 163
Coss A 1 (0,Lw,u1.1,3,1313,0,0,0,31,3,0,1,0,1,,uu1,4,3,3,0,0,3,u 2 169
Cosa B utl (0,4,0,1,0,0,3,0,0,0,0,3,0,0,0,1,0,1,u,3 10,13, 1,1,1,1,1,0,u) 2 171
Coss G utl (L,3,1,0,1,31,31,0,1u0,0,13,3,0,0,3,11,0,3,1,1,0,u1,Lu 2 173
Coso A 1 (3,0,0,0,3,0,u,3,3,3,1,3,0,1,1,0,3,u,1,u,0,3,0,u,1,3,0,0,u,a,u,1) 4 200

first 34 entries of = are set to be 0, the rest of the vectors are listed in Table 5.7. As neighbours
of codes in Table 5.3 we obtain 12 new codes with weight enumerators in Wsso. Note that all the
codes have an automorphism group of order 2.

Table 5.7: New codes of length 68 as neighbours of Ces ¢

N68,i (517357 I36; -, 56'68) i &

/\/%8,1 (1111000110001110000010111110001011) 3 163
/\/25872 (1011100000000001011100000010011001) 3 175
%8,3 (0011100010001111001100000010110111) 3 177
AfGSA (1000010001101010111011001111101111) 4 159
./\/6875 (1001000101100010111111100110010011) 4 175
./\fﬁ&ﬁ (1110001100110111010000111000010100) 4 186
A/%s,? (1100101101100111010011101110111110) 4 191
./\/%8,8 (1101001101011110100110001000110101) 5 182
/\/’6879 (1001001001011101011111011100001001) 5 187
N%s,m (0000000110000101101101001100100001) 5 189
N%s,n (0111100111011000110000111011010111) 5 191
/\/68,12 (0000101110001110101111010100111111) 5 193
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Chapter 6

New Self-dual Codes from 2 x 2 block
circulant matrices, Group Rings and
Neighbours of Neighbours

Let A and B be n x n circulant matrices over F,. The four circulant construction, introducted by
[3], considers generator matrices of the form:
A B
_ BT AT .

<IQ7L

This construction was then applied to the ring Fs + ulFy; consequently, many new extremal self-dual
codes were obtained, [70]. More recently, in [43], the four circulant construction was generalized by
including another reverse construction in the generator matrix:

A B+C)

([2” BT +C AT

where A and B are n X n circulant matrices, and C'is a n x n reverse circulant matrix. In [73], the
four circulant construction was modified to:

A B

-B A

(IQn

where A is an n X n A-circulant matrix and B is a n X n A-reverse circulant matrix over a finite
Frobenius ring R. In addition to this construction, they also construct new self-dual codes from the
construction:

1 1 =z vy

I 1 1 y =
mlT 4T A B
tr 2T B A
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where A is an n X n circulant matrix over a finite Frobenius ring R, B is a n X n reverse circulant
matrix over a finite Frobenius ring R and z,y, z,t are vectors over a finite Frobenius ring R. In
[35], the double circulant construction was extended to the following:

A1 A2 Ce Ak
A, A - A_
[2n . .1 . k !
A2 A3 ce Al

where A; are n x n circulant matrices over F,. In this work, we construct self-dual codes by consid-
ering generator matrices as a unique combination of 2 x 2 block circulant construction, group rings
and reverse circulant matrices. Specifically, we construct self-dual codes from generator matrices of
the form:

{ 7 AB—i—C}
B+C A

where A and B are matrices that arise from a group ring construction and C' is a reverse circulant
matrix.

The main group discussed in this chapter is the cyclic group. Recall that Cy, = (z | 2% = 1)
and

p—1 1
= Z Qigpj12°77 € RCy,
=0 7=0
then,
O'(U) — Al AQ
A A
where A]’ = CZ.’f’(Oé(];l)p+1, A—1)p+2 - - - ,ajp) and A; = CiT((Jéjp, AG—1)p+1y - - - aajp—l)-

Furthermore, recall the canonical involution * : RG — RG on a group ring RG is given by
v* = Zg agg !, for v = Zg ayg € RG. If v satisfies vv* = 1, then we say that v is a unitary unit in
RG. We also note that o(v*) = o(v)”.

For the remainder of this chapter, we describe the construction itself. We present the structure of
the generator matrix and discuss associated theory in order to put some restrictions on unknowns.
These restrictions aim to maximise the practicality of the construction method by reducing the
search field. Following the theory, we look at the numerical results from certain groups of order 4, 8
and 17. We then apply extensions and consider neighbours of codes as methods of finding new codes.
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6.1 Construction

Consider the following matrix M (o), where v; and vy are distinct group ring elements from the
same group ring RG where R is a finite Frobenius commutative ring of characteristic 2 and G is
a finite group of order n. o(v) is a matrix generated from a group ring element and A denotes a
reverse circulant matrix.

o(vy)  o(vg) + A

M(o) = L,
@) { olv)+A  o(v)

Let C, be the code generated by the matrix M (o). Clearly, C, has length 4n. We will now establish
conditions when C, generates a self-dual code. We will also create a link between unitary units in
RG and the above construction yielding self-dual codes.

Lemma 6.1.1 Let R be a finite commutative Frobenius ring of characteristic 2 and let B and C
be n X n matrices over R. Then, the matrix

M =

]QnBC}

C B
generates a self-dual code iff (B + C)(B+ C)T = 1I,, and BCT = CB?”.

Proof. Clearly, the code generated by M has free rank 2n, as the left-hand side of the matrix M is
the 2n x 2n identity matrix. The code generated by M is self-dual if and only if the code generated
by M is self-orthogonal. Now,

MMT = I+ B C B ¢\ (I,+BB"+CcCc" BCT4CB"
T C B cT BT )~ CBT + BCT I,+CCT + BBT

and MM?T =0 iff I, + BBT + CCT = 0 and BCT + CBT = 0. Adding these equations, we obtain

I, +BBT +CCT + BCT + CB" =0 <= (B+C)(B+C)" = 1,.

Theorem 6.1.2 Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a
finite group of order n. Then, C, generates a self-dual code of length 4n iff (o(vi +vq) + A)(o((v1 +
v)* )+ A) =1, and o(v1)(o((vy +v2)*) + A) = (o(v1 + v2) + A)o(v]).

Proof. By the previous result, C, generates a self-dual code iff
(o(v1) 4+ o(v) + A)(o(v1) + o(vy) + A)F = I, and o (v1)(o(v2) + A)T = (o(vs) + A)o(v1)T.
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Now, o(v1) + o(v2) + A = o(v; + v2) + A and

(o(vy) 4+ o(va) + A)T )T+ o(vy)T + AT
vy) +o(vy) + A
vy +vy)+ A

(v +v9)") + A.

o(
o
o
=o(
Clearly, o(vi)(o(v2) + A)T = (o(vy) + A)o(v)T is equivalent to

o(v))o(v)’ +o(v)(o(vy) + AT = o(v))o(v)’ + (a(va) + A)o(vy)”.

Considering the left-and right-hand sides separately, we obtain:

o(v)a(v)" +a(v)(o(ve) + AT = a(v1)a(v)) + o(v)(o(va)" + AT)
(v1)o(v]) + o(vi)o(v;) + o(v1)A
(v1)(o(v]) + o (v3) + A)
(v1)(o(v] +v3) + A)

(v1)(o((v1 +v2)") + A).

I
9 9 9 9 9

and

(0(v2) + A)o(v)" + a(v1)o(v)" = o(v1)a(v]) + (o (v2) + A)o(v])
(v1)o(v1) + o(va)o(v) + Ao (v])
(o(v1) + a(vz) + A)o(v7)

= (o(

o(v1 + vg) + A)o(v7).

o
o

Lemma 6.1.3 Let R be a finite commutative Frobenius ring of characteristic 2, A be a nXn reverse

circulant over R, and let V' be a n x n circulant matriz over R. Then,

AVT +vAT =0

Proof. Let V = cir(vi, v, Un_1,. .., 03,02). Clearly, V = viI, +voP + v3P? + - - + v, P"~! where

P =cir(0,0,...,0,1) and A = rcir(ay, a9, ..., ap_1,a,). Now,

VT — 1)1[77; + UQPT —+ U3(P2)T 4+ Un(Pn_l)T
= vl + v PT 4 v3(PT)? 4 - - + o, (PT L.

As A = AT, it remains to show that APT + PA = 0. Finally,

PA =cir(0,0,...,0,1) - rcir(ay, as, . . ., ap_1, ay) = rcir(any, as, ..., a,_1)
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and
APT =1cir(ay, ay, ..., an_1,a,) - cir(0,1,...,0,0) = rcir(an, ai, . . ., ap_1).

Lemma 6.1.4 Let R be a commutative ring and let G = {g1 = e, ..., g, } be a finite group of order
n > 1. The o(v) is symmetric for any v € RG if and only if G is an abelian group of exponent 2.

Proof. Clearly, o(v) is symmetric for any v € RG if and only if Qg1 = Q i,j=1,...,n)

1 (
9; 9i
for any v = 3 g9 € RG. Furthermore, we have 9 'g; = gj-’lgi (t=1,...,n) (i, =1,...,n)
or xy = y o~ ! for any z,y € G. Note that for an abelian group of exponent 2, yxy = x~! or
xyzy = e or (xy)? = e for any z,y € G. Therefore, we have that g> = e for any g € G; thus, G has
exponent 2.

It is interesting to note that any group of exponent 2 is abelian because xyry = e and

rryy = ee = e since x and y are commutative for any x,y € G. [

Lemma 6.1.5 Let R be a commutative ring. An n x n-matriz X satisfies XA = AXT for any
n X n reverse circulant matriz A over R if and only if X is a circulant matriz.

Proof. This proof follows from lemma 6.1.3. Let X be a n x n-matrix which satisfies XA = AX7.

Then
XA=A"X"
and
XA=(xA)T
for any n x n reverse circulant matrix A over R. This implies that XA is symmetric. Let
0 ... 01
0 ... 10
D=1. . .| = rcir(0,0,...,0,1), X = (x;;). Clearly, we have D* = [, and XDDA
1 ... 00

is symmetric for any n x n reverse circulant matrix A over R. Therefore, (x;,_;)DA is symmetric.

So we have (x;,_;)B is symmetric for any n x n circulant matrix B over R. This is equivalent to
the fact that (z;,_;)P"* is symmetric for any k € {1,...,n} and n x n matrix P = cir(0,0,...,0,1).
Thus, (2; (4—jymodn+1) 18 symmetric for any k € {1,...,n}. We have

Li (k—j) modn+1 = Lj,(k—i) modn+1 i,k € {1,...,n}

It is easy to see that j* = (k — j) mod(n + 1) equivalent to j = (k — j') mod(n + 1) where
i, 5,3 ke {l,....n}. So

Li,j* = L(k—j3) modn+1,(k—i) mod n+1 i7j/7 ke {17 s 7n}
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Thus ((k — j') mod(n+ 1)) — ((k —4) mod(n+ 1)) =i — j (mod n). Therefore, we have that x; ;
is constant if (i — j) mod n is fixed. Thus, X is circulant. |

Lemma 6.1.6 Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a
finite abelian group of order n of exponent 2. Then, C, generates a self-dual code of length 4n if
o(v1),0(ve) are circulant matrices, o((vy + v9)?) + A% = 1I,,.

Proof. We note that Ac(vf) = o(v1)A, Ao(vi) = o(ve)A by lemma 6.1.3. By lemma 6.1.4 for
any v € RG o(v) is symmetric, so o(v*) = o(v)? = o(v). We also know by theorem 6.1.2 that C,,
generates a self-dual code iff

(0(v)) + o(vy) + A)(o(v1) + o(vy) + A)T = I, and o (v1) (o (vy) + A)T = (o(vy) + A)o(vy)T.
Now,

(o(v1) + a(va) + A)(o(v1) + 0 (v2) + AT = (o(v1 +v2) + A)(o((v1 + v2)") + A)
o(vy +v)o((vy + v2)*) + [o(v1 + va) A + Ac((vy + v2)*)] + A?
= o((v1 + ) (01 +v2)") + A? = o((v1 + v2)?) + A® = I,

and
a(v1)(o(v2) + A)T + (o(v2) + Ao ()" = a(v1)o(v3) + [o(v1) A+ Ao (v])] + o (v2)o(v])
= o(v1v2) + o(v201)
= o(v1v2) + o(v1v) =

Lemma 6.1.7 Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a finite
cyclic group of order n. Then, C, generates a self-dual code of length 4n iff o((vy +va) (v +v2)*) +
A% = I, and v1v} = vov7.

Proof. We note that Ao(v*) = o(v)A for all v € RG by the previous result. We also know that
C, generates a self-dual code iff

(0(v)) + o(vg) + A)(o(v1) + o(vy) + A)T = I, and o (v1) (o (vy) + A)T = (o(vy) + A)o(vy)T.
Now,

(o(v1) + 0 (v2) + A) (o (v1) + o (v2) + A)"

(0(v1 +v2) + A)(o((01 +1v2)") + A)
U1 + UQ)O'((Ul + Uz)*) + [O’(Ul + UQ)A + AO’((Ul + ’UQ)*)] + A2
(Ul + UQ)(’Ul + Uz)*) + A2 = [n

o
o
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and

o(v)(o(vy) + AT + (o(v) + A)a(v)! = a(v)o(vy) + [o(v1) A+ Ac(v])] + o(ve)a(v])

o
o(v1v3) + o(vavy)
o

(v1v5 + vou7).

Finally, o(viv} + vev]) = 0 iff viv} = vevy]. |

Lemma 6.1.8 Let R be a finite commutative Frobenius ring of characteristic 2 and let G be a finite
abelian group of order n. Let C, be self-dual. If A =0, then vy + vy is unitary.

Proof. If C, is self-dual and A = 0, then o((v; +ve)(v1 +v2)*) = I, and (v1 +v2)(v1 +1v2)* =1. B

6.2 Numerical Results

In this section, we construct 32 new self-dual codes of length 68. We begin with the construction of
self-dual codes of length 64 from groups of order 4 and 8. Using Theorem 1.2.27, we construct new
self-dual codes of length 68. Next, we construct codes of length 68 from groups of order 17. We
then find new self-dual codes of length 68 by finding neighbours of these codes, followed by finding
neighbours of these neighbours. Magma ([5]) was used to construct all of the codes throughout this
section.

The possible weight enumerators for a self-dual Type I [64, 32, 12]-code are given in [20,28] as:

Wear = 14 (1312 +1683)y™ + (22016 — 643) y™* +--- |14 < § < 284,
Weso = 1+ (1312+168) y' + (23040 — 643) y™* +--- ,0 < B < 277.

Extremal singly even self-dual codes with weight enumerators W41 are known ([1,39,100]):

35,36, 38,39, 44, 46,49, 53, 54, 58, 59, 60, 64, 74

and extremal singly even self-dual codes with weight enumerator W, o are known for:

5 { 14, 16,18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 32, 34, }

e[ 0:nd0,41,42,44,45,46,47,48,49,50, 51,52,54,55, 56,57, |\ (g gy
58, 60, 62, 64, 69, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120, 184 O

The weight enumerator of a self-dual [68,34,12]5 code is in one of the following forms:

Wesa = 1+ (442 + 48)y"? + (10864 — 88)y™ + . . .,
Weso = 1+ (442 4 48)y"? + (14960 — 83 — 2567)y™ + ... |
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where [ and ~ are parameters and 0 <y < 9.

The existence of codes in Wyg 1 are known for ([27]) 8 =104, 105, 112, 115, 117, 119, 120, 122,
123, 125,..., 284, 287, 289,291, 294, 301, 302, 308, 313, 315, 322, 324, 328,..., 336, 338, 339, 345,
347, 350, 355, 379 and 401.

The first examples of codes with a v = 7 in Wg 2 are constructed in [102]. Together with these,
the existence of the codes in Weg o are known for the following parameters (see [39,102]):

=0, B€{2mlm=0,7,11,14,17,21,...,99,102, 105,110, 119, 136, 165}; or

B € {2m+1|m = 3,5,8,10,15,16,17,20, ..., 82,87,93,94, 101, 104, 110, 115};

vy=1, B €{2mlm =19,22,...,99}; or B € {2m+ 1|m = 24,...,85};

v=2, B €{2m|lm =29,...,100,103,104}; orfs € {2m + 1|m = 32,...,81,84,85,86};

v =6 with 3 € {2m|m = 69, 77,78, 79,81, 88}

v="Twith g € {Tm|m = 14,...,39,42}.

Firstly, we construct self-dual codes of length 64 from Cy (over Fy + uF,), Cyo (over Fo + ulFy)
and Cg (over Fo+ulFy). We then construct three self-dual codes of length 68 (Table 6.1) by applying
theorem 1.2.27 to the codes constructed in Tables 6.1,6.2 and 6.3. We replace 1 + u € Fy + ulFy
with 3 to save space. The calculation on Magma is shown in Appendix A.4, in order to construct

a code of length 32 using the groups Cg and Cg. Lifting these codes over R; produces the code of
length 64 in Table 6.2.

Table 6.1: Self-dual code over F4 + ulFy of length 32 from C, and Cj.

[AiJveCy vely 1y [Aut(A;)] B |
| 1 ](8966) (0000) (A617) 21 0|

Table 6.2: Self-dual code over R; of length 64 from Cyg and Cf.

‘ i ‘ veCy v e Cy rA |Aut(Bz)| I3 ‘
[ 1 | (wuw10311)  (uu01luu0) (u0300013) 23 0 |

Table 6.3: Self-dual code over R; of length 64 from Cys and Cys.

‘ i ‘ v E 042 v E C42 A |AUt(CZ)| B ‘
[ 1 [ (wu0luOul)  (uOulludl) (u3ududul) 21 48 |

We now construct two self-dual codes of length 68 using Cy7 (Table 6.5). We let v = 0 € RCY7.

We note that in this case, the construction is equivalent to the usual four circulant construction.
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Table 6.4: Self-dual code of length 68 from extensions of C', Cs and Cj.

D; [Code ¢ X 7B |Aut(E)|
1 Ay 1 (0133010303011%1001333u01031uuulu) 4 113 2
2| By w+1 (013011030003013301111030uuul3ul0) 2 61 2
31 ¢, w+1 (0u10303u110333001103u00130103303) 1 179 2

Table 6.5: Self-dual codes over Fy of length 68 (Wgs2) from Cy7 and Cir.

‘ El ‘ V] € C17 Vg € C17 TA |Aut(D1)| Y ﬁ ‘
‘ 1 ‘ (00000000000011011)  (00000000000000000) (00100110010110111) 22.17 0 238 ‘
‘ 2 ‘ (00000000110001111)  (00000000000000000) (00100100101010101) 22.17 0 272 ‘

We now construct neighbours of these codes, and neighbours of these neighbours.

Tables 6.6 to 6.12 show the repeated process of finding neighbours from neighbours in order to
construct numerous interesting results.
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Table 6.6: New codes of length 68 from neighbours of E; and Ey

E El (IE?,5,]?367 ...,1'68) |AUt(Fl)| Y ﬁ Tpr
1 2 (0111011100100011000001001000100110) 2 0 208 Wiso
2 2 (1110000011111000011000011110011000) 1 0 214 Weso
3 2 (0001000100001110111100001010011010) 2 1 191 Wegpe
4 2 (0010111111111110001111001010111001) 2 1 202 Wese
5 1 (1001101111101110011000101000010110) 1 1 210 Wespe
6 2 (0101001000111001100011110011000101) 1 1 211 Wiese
7 2 (0010101101010100111100000001010001) 1 1 229 Wiese
8 2 (1111111111111111111011101111111111) 1 317 Wies

Table 6.7: New codes of length 68 from neighbours of F; and Fj

G; F (35, 236, .-, Teg) |[Aut(Gi)| ~ B Type
1 8 (0001001101110000000000101011001100) 1 0 218 Wgso
2 7 (0110000010001000111000111000100010) 1 1 193 Wieso
3 7 (1000100101011000011011110011000000) 1 1 195 Weso
4 7 (0101001010010010000100100101001001) 1 1 233 Wespe
5 7 (0111010010001001001000000100101010) 1 2 193 Weso
6 7 (1100010011000010110111011101101111) 1 2 195 Weso
Table 6.8: New codes of length 68 from neighbours of Gj
H; G; (35, 36, .-, Tes) |Aut(H;)| ~ B Type
1 5 (0010010110011000000010111001111110) 1 1 197 Wese
2 5 (0100001011001011101010110111011111) 1 1 199 Weso
3 5 (1101001011101101011111110111100111) 1 2 199 Wgso
4 5 (0011000011001110011000001100000001) 1 2 191 W
5 5 (0001100100110010010101000111100100) 1 2 204 Weso
6 5 (1011101001000001101001010111011101) 1 2 218 Wigo
Table 6.9: Code of length 68 from the neighbours of Dy
[z' Dz (.’L’35, L36s +ens .’L’Gg) |A7Lt(li)| vy B Type
1 (1111000110110011110111001010111101) 1 5 133 Wespe
Table 6.10: Code of length 68 from the neighbours of [,
Ji 1 (35, 236, .-, Tes) |Aut(J;)| v B Type
1 (0000100001011000111001010100001100 1 6 141 Wespo
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Table 6.11: New codes of length 68 from the neighbours of J;

K; J; (@35, T36, .., Tos) [Aut(K;)] v B Type
1 1 (1111111101001100010100001000010100) 1 6 131 ngﬂg
2 1 (0000001110010111101110011111001111) 1 7 158 Wespe

Table 6.12: New codes of length 68 from the neighbours of Ky

Li Kz (1’35,I36,...,1’68) |Aut Lz)| Y ﬁ Type
1 2 (0110111111010100011101010011010101) 1 7 155 Wespo
2 2 (0101010101010001001010011101110010) 1 7 156 Weso
3 2 (0010011101010101010111011110110110) 1 7 157 Wese
4 2 (1101111110110111001111110101101100) 1 7 159 Wgso
5 2 (1001011111000110001111101100101110) 1 7 160 Weso
6 2 (1100000100100000010100101100011010) 1 7 162 Wiso
7 2 (1000010000010110000111110010011111) 1 7 164 Weso
8 2 (0100001001101111111010000101010001) 1 7 165 Weso
9 2 (0011101000100011011101001111101111) 1 7 167 Weso
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Chapter 7

New Extremal Binary Self-dual Codes
from block circulant matrices and block
quadratic residue circulant matrices

A special type of cyclic code is a quadratic-residue code. While quadratic-residue code have been
studied extensively since the early 1970’s ([2,77,98]), the theory is lacking when it comes to extremal
self-dual codes.

If we consider the double circulant construction (I|A) where A is an n X n circulant matrix over
a ring R, clearly the search field in this cases is |R|™. In [33], Gaborit introduced this notion of a
quadratic residue circulant matrix where by the search field is considerably reduced. We define the
quadratic residue circulant matrix as follows:

Let F,x be the Galois field of p* elements. Let v; € IF’;, A be a pxp circulant matrix, @,(a, b, ¢) be the
p X p quadratic residue circulant matrix with three free variables, obtained through the quadratic
residues and non-residues modulo p. Thus, the first row of 7 = (ro,r1,...,7p—1) of Qp(a,b,c) is
determined by the following rule:

a ifi1=0
r; = < b if i is a quadratic residue modulo p

¢ if 7 is a quadratic non-residue modulo p.

In [33], many self-dual and extremal self-dual codes were produced by replacing A with Q,(a, b, c)
in the usual double circulant construction. Additionally, self-dual codes from generator matrices of
the form

M2 72\73\74 4
Y2 V4
: I : Qp(a,b,c)
Y2 Va4
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were considered where v; € F,r. In [75], this technique is extended to consider constructing
self-dual codes over Fy + uFy + u?Fy (where u® = u) from the generator matrix:

‘ A ‘ B B
~y
o Qpla,b,¢)
~

where @Q,(a,b,c) is the quadratic residue circulant matrix defined above over Fy + ulfy + u*F,
and over A, 8,7 € Fy+ ulFy + u?Fy. In [37], these techniques were extended to constructing self-dual
codes from generator matrices of the form (Q),(a,b, c)|A) and

nlre o sl

Y2 V4

: Qp(a,b,c) : A ’
Y2 V4

where A is a p X p circulant matrix. In this chapter we consider constructing self-dual codes from
generator matrices of the form

Qo Q1 Q2| A A Ay
QQ QO Ql A2 AU Al
Q1 Q2 QoA Ay A

where @); are quadratic residue circulant matrices and A; are p x p circulant matrices.

We begin with discussing some important properties of quadratic residue circulant matrices. Fol-
lowing the fundamental theory, we describe the construction itself. We provide theoretical results
that establish certain conditions when this construction yields self-dual codes. This chapter con-
cludes with applying the construction to find many known and unknown self-dual codes that had
not been previously constructed.

7.1 Quadratic Residue Circulant Matrices

Let Q,(as, b, ¢;) be the i"-p x p quadratic circulant matrix, where a;, b;, ¢; € R and p is a prime num-
ber and 0 <4 < 2. For the purpose of this chapter, we need to evaluate Q,(a;, b, ¢;)Qp(aj, bj, c;)T.
From [33], we can clearly see that Q,(a;, b, ¢;)Qp(a;, bi, c;)"
) Qplad b7 + k(b7 + ), ¢ + k(b + ) ifp=4k+1
C Qula? 4 02 + 2, aib; + aici + bic; + (2 + )k, aib; + aici + bic; + (02 + k) ifp=4k+3°

k € Z. We will now calculate Q,(a;,b;,c;)Qp(aj,bj,c;)". First we will consider the case when
p = 4k + 1, followed by the case when p = 4k + 3.
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Theorem 7.1.1 If p =4k + 1 then Qp(a;, bi, ¢;)Qy(a;,bj, ¢;)T
= Qp(aiaj, aib]- —I—biaj + <k+ 1)blbj +/€(sz] +Cibj) +l{7CiCj, CL,L'C]' —|—C,L'CLJ' +k'blbj +k(bzcj +Cibj + (k?-'- 1)CiCj).
Proof. Assume that p =4k + 1. Let Q = @,(0,1,0) and N = Q,(0,0,1), then
Qp(ai, bi, ci)Qp(aj, bj, Cj)T = (alf + bZQ + CZN) (ajl + b]Q + CjN)T
= (alf + bZQ + CiN)<ajI + ijT + CjNT)

= CL,L'CLJ'[ + aiijT + aichT + bian + bleQQT
-+ biCjQNT —+ ciajN -+ CiijQT + CiCjNNT.

Recall ([34]) that @ = QT, N = NT, QQ* = (k+1)Q + kN, QNT = NQT = k(Q + N) and
NNT = kQ + (k+ 1)N. Therefore,

Qplas, bi, c)Qp(ay, by, ¢;)" =a;a;1 + (aib; + biag)Q + (aic; + ciaz)N + bibs((k +1)Q + kN)
+ (bici + ¢ibj)(k(Q + N)) + cic;(kQ + (kK +1)N)
=a;a;1 + (a;b; + bia;)Q + (aic; + ciaj) N + bb;j(k + 1)Q + bb;kN
+ (bic; + ¢:b))kQ + (bic; + ¢;b;)kN + cicjkQ + cicij(k + 1)N
=I[a;a;] + Qlab; + ba; + (k + 1)bb; + k(bic; + cibj) + keicy]
+ Nlaicj + ca; + kbibj + k(bic; + ¢;ibj) + (k + 1)cicy]

= Qp(aiaj, aibj—i-biaj—i-(k—i-l)bibj—i—k(bicj—i-cz-bj)—i-kcicj, CLiCj+CiCLj+k‘bibj—|—/{Z(biCj—|—Cibj>+(k’+1>ci0j). [ |

Theorem 7.1.2 If p =4k + 3 then Qp(a;, bi, ¢;)Q,(a;,b;, ¢;)T

= Qp(aiaj + bzb] + CZ‘Cj7 (aicj + biaj) + k(bzb] + CiCj) + kbiCj + (k? —+ ].)Cibj,
(CLibj + CZ'CLj) + k(blbj + CZ'C]') + (k’ + 1>biCj + kCibj) .

Proof. Assume that p = 4k + 3. Then

Qplai; by, ci)Qplay, b, ¢5)" = aiasI + a;b; Q" + aic;NT + bia;Q + bib;QQ"
—|— biCjQNT —f- CZ'CL]‘N —|— CiijQT —|— CZ‘C]'NNT.

Recall ([34]) that @ = NT, QQT = NNT = I + kQ + kN, QNT = kQ + (k + 1)N and NQT =
(k+1)Q + kN. Therefore,
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Qp(ai, by, ci)Qplaj, bi, c;) =a;a;1 + (acj + bja;)Q + (a;b; + c;a;)N + (bbj + cic;) QQT

+bic;QNT + ;b NQT

=a;a;1 + (a;c; + biaj)Q + (a;b; + ciaj)N + (bib; + cicj)(I + kQ + kN)
+bic;(kQ + (k+ 1)N) 4+ ¢;b;((k+ 1)Q + kN)

=a;a;l + (a;c; + b;a;)Q + (a;ibj + c;a;) N + (bib; + cicj) I + k(bb; + ¢ic;)Q
+ k(bibj + cicj)N + kbic;Q + (k + 1)bjc;N + (k + 1)c;b;Q + kc;b; N

=I[a;a; + bib; + cicj] + Q[(aic; + bja;) + k(bb; + cicj) + kbic;
+ (k + 1)cibj] + N[(aib; + cia;) + k(bib; + cicj) + (k + 1)bic; + ke;b,]

=Qp(a;a; + bibj + cicj, (ac; + biaj) + k(bib; + cic;) + kbic; + (k + 1)¢;b;,
(a;b; + cia;) + k(bibj + cicj) + (k + 1)bic; + kc;b;)

7.2 The Construction

We shall now describe the main construction itself and provide conditions when this technique
produces self-dual codes. Let Q; = Q,(a;, by, ¢;). Define the matrix

Qo Q1 Q2| A) A1 Ay
M= Q Qo Qi|A Ay A
Ql QQ QO Al A2 AO

and let C be the linear code of length 6p generated by the matrix M, where A; are p X p circulant
matrices over R. Let CIRC(A;,...,A,) be the block circulant matrix where the first row of block
matrices are Ay,..., A, and ap, = aq moda 3), then

2

2 2 T
T T T T T T T
MM" = CIRC | > (QiQT + AiAD), Y QiQisay, + Aifiya),. <Z QiQ+2)s T AiAw?)b)

=0 =0 i=0

2 2 3 3
Clearly, C' is self-orthogonal if and only Z A;AT = Z Q:QF and ZA,-A[I(; 4oy = Z QiQﬁi 425+
i=0 i=1 i=1

=0
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2
Using Theorem 7.1.1, we can see that Z QzQzT =

=0
2 2 2
Qp<za§,2<b§+k(b§+c ), (¢ + k(] + ¢ ))) if p=dk + 1
7 =0
2 2
Q, <Z a; + b7+ &), Y (aibs + aici + bici + k(0 + ),
=0 =0
2
\ =0

Additionally (by Theorem 7.1.2), if p = 4k + 1 then

> QiQfirzy, = @y (Z a2y Y (bt + by, + (k+ Dbibsay, + k(bicray, + cibaray,
=1 ] i=0

2
+ kczc[(1+2 ) Z aiCl(i+2)]3 T Ci[(i+2)]s T kb; b (i+2)]s T k(b Cl(i+2)]s T czb[ i+2)] (k + 1)Cic[(i+2)]3)>
=0
and if p = 4k 4+ 3 then

3 2 2
Z QiQlir2y; = @y (Z (aiay(iv2); + bibjivays + ciclira)s, Z[(aic[(i+2)}3 + biajit2);)
i—1

=0 1=0
2
+ k(bibira), + cictirays) + kbicgiras + (k+ Debarasl, D [(@ibiaray, + ciagirays)
1=0

+ k(bib[(i+2)}3 + Cic[(Hg)]g) + (k+ 1)bic[(i+2)]3 + kcib[(i+2)]3)]>
Combining these results, we reach the following:

Theorem 7.2.1 Ifp = 4k+1, then C is a self-orthogonal code if and only if the following conditions
hold:

2 2
1Y A4AT = Qp<zal,zb2+kb2+c ), (] +k62+0))>
1=0 1=0 =0

2.

2

ZA s, = O (Z Gty ) (@bl + biagray, + (k + Dbibira,

=0

2
+ k(bicyitays + Ciblitays + Ekciciva)s), Z a;Cl(i+2)]5 T Cil[(i+2)]; + kbibita)),
=0

+ k(bic(iva), + cibivays + (K + 1)CiC[(i+2)13)> :
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Theorem 7.2.2 [fp = 4k+3, then C is a self-orthogonal code if and only if the following conditions
hold:

2 2 2 2
1.y AT = <Z a? + b2 + ¢2) Z (ab; + aici + bic + k(07 + &), ) _(ab; + aici + bic; +
1=0 =0 i= =0
k(b; + )
2,
2 2
> Aidfi), = Qy (Z @)y + 0ibira)s + Ciciarae Y l(aiciaras + biagirg) + kbibaso),
i= =0 =0

2

+ keicira, + Rbicgira, + (5 + Dbl Y _[(abaran, + ciagra) + kb,
=0

+ kCZC[(H_Q (/{ + 1)b Cl(i+2)]s T /{CZb[ i+2)] )])

Theorem 7.2.3 The matriz M has full rank if and only if the following conditions hold:

1. S (AC+ AD) =1,

~.
I o
=)

[\

2. (AiClita), + AiDjitgy,) = 0, and

i}
o

[\

3 (A C[H_l]?’ + A Dz—i—l ) O

1=

[e=]

for some p x p circulant matrices Cy, and D; over R.

Proof. Clearly,
= ( CIRC(QO: Qb QQ) ‘ C[RC(A()a Al) AQ) )

has full rank iff MN = I3, for some 6p x 3p matrix N over R. Let N’ = (ny,...,ng,)" be the
first column of N, clearly M (circ(ny,...,ny)", ... circ(nspi1, ... n6p)" )T = (Ip,0,,0p,0,,0,,0,)7.
If N" = (Cy, Cy,Ca, Dy, D1, D2)T is the matrix that satisfies MN" = (I,,,0,,0,,0,,0,,0,), then N
can take the form

v [ CIRC(Co,Co,Ch)
= \ CIRC(Dy, Dy, Dy)

where C}, and D, are p X p circulant matrices over R. Now,

2 2 2
MN = CIRO <Z<AZCZ + A1D2)7 Z A C[H-Q]s —|— A D 2+2 y Z A'C[i+1]3 —|— AZD[H-I]s))
1=0 =0 =0
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and M has full rank if and only if:

<.
[l o
=)

[\

2. ) (AiCliyg, + AiDjiyg,) = 0, and

7

[\

3. (Aio[i+1]3 + AiD[i-i-l}g) = Op

i
o

Theorem 7.2.4 Let C be self-dual. Then,
2 2 T
(a)s+(xo) oo
i=0 i=0
for some p X p matrices B and B’ over R.

Proof. By the previous result,

-
I o
=)

[\

2. (AZ‘C[i+Q]3 + AiD[Z‘J’_Q}S) = Op and

7

Il
=)

[\

3. (AiC[i—i-l]g + AiD[i—l—l}g) == Op.

7=

[e=]

Adding these equations, we obtain that

(£0) (50« (54) (50) -+

2 2 2 2
Let Qg = ZQ“ A3 = ZAZ, Cg = ZCZ and D3 = ZDZ ThUS,
1=0 =0 1=0 1=0

QsC5 + A3Ds = 1,
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and
(QsCs + AsDs)" = CTQY + DT AT = QTCT + ATDT = 1,

since circulant matrices commute. Therfore,
Q3Cs + AsD3 = Q3C5 + A3(Q5C5 + AfD3)Ds
- Qgcg + AgQg:Cng + AgAngDg
=1,
If C is self-dual, then M M7T = 03, and
(L, I, L, YMM" (1, I, I,) =0,

Consequently,

( Qs Q3 Qs Az Az Az ) ( Qs Q3 Q3 Az Az Az )T = 0, and Q3Q3T = A3A3T-

Finally,

I, = Q3C5 + A3Q3TC§FD3 + AgAngDg
= Q305 + A3Q5 C3 D3 + Q3Q5 D3 D3
= Q3C3 + Q3Q1 D3 D3 + A3Q3 C3 D3
= Q3(Cs + Q3 D5 Ds) + Q3 (A3Cy Dy)
= Q3B+ Q3B

where B = C3 + QY DI'D3 and B’ = A3CT Ds. [ |

2
Theorem 7.2.5 Assume that p =4k + 1 and let C be self-dual. Then Z Q; 1is invertible.
i=0

Proof. By the previous result,

(&) (5e) #-s

for some p x p matrices B and B’ over R. Clearly, Q; = a;I, + b;Q) + ¢;N where Q = Q,(0,1,0),
N =@Q,(0,0,1). Now,

Q? = (ai[p + bZQ + CZ'N)T
= ailp + bZQT + Cz'NT

Cli]p + bz@ -+ CiN

= Qi
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since Q = QT, N = NT. Therefore,

(g@) o (in)TB/ (iQ’) B+ (i@) B' = (i@) (B+B)=1,

=0 1=0 1=0

2
and Z (); is invertible. [ |

=0

In the next result, we consider a specific example of a commutative Frobenius ring of characteristic
2. For the purpose of the next result, we assume that R is a local ring with a residue class field
that contains 2 elements.

Theorem 7.2.6 Assume that p = 4k+3, let R be a local ring with a residue class field that contains
2

2 elements and assume that k is even. Let C be a self-dual code over R. Then Z Q; s invertible.
i=0
2

2

Proof. Let Q3 = ZQ“ as = Zai, by = Zb and ¢35 = Zci Clearly, Q3 = asl, + b3Q + csN
1=0

(where @ = @,(0, 1,0) N = Qp(O 0,1)) and QgB + Q¥ B" = I, for some matrices B and B’. Let

J be the unique maximal ideal in R. It remains to show that Q3 (mod J) is invertible. If b3 = ¢3
(mod J) then

Q3 = (azl, + b3Q + b3N)" = azl, + b3Q" + b3NT = azl, + bz3N + b:Q = Q3 (mod J)
since Q@ = N”. Therefore,
Q3(B+B)=Q3sB+ Q3B =1, (mod J).
and Q3 (mod J) is invertible.

If by # c3 (mod J) then b3+ c3 =1 (mod J) and

(1, )Qs =(1,...,1)Qs = (as + bs + ¢3,..., a3+ bg + ¢3) = (az + 1)(1,..., 1) (mod J).
N—— N— — - N——
p p p p

Thus
(1,...,D)Q3sB+(1,...,1)QiB" = (1,..., 1)1,

(as+1)(1,... . 1)(B+B)= (a3 +1)(1,....,)B+ (a5 + 1)(1,...,)B' = (1,...,1) (mod J)

N—— S—— S—— ~——
P p P P
and
as+1(1,..., ) (B+B)1,....)T=(@1,....,1)1,....,1)T=1 (mod J).
(a3 + 1)( ) ) ) = ) ) ( )
P P P P



So a3 + 1 is invertible by modulo ideal J and a3 = 0 (mod J). Thus @3 = @ (mod J) or Q3 = N
(mod J) and Q* = N? = [, since k is even and Q? = N? = [, + kQ + kN. Thus Q3 (mod J) is
invertible. [ |

7.3 Numerical results

In this section, we construct new self-dual codes of length 66 and 68 via certain extensions, neigh-
bours and sequences of neighbours. Initially, we consider the above construction when p = 5 over
Fy + ulFy. We construct an extremal self-dual code (Type I) of length 60 (described in Table 7.1).
From this code, we construct an extremal self-dual code (Type I) of length 64 via an Fy + ulFy
extension (Table 7.2). Next, we find a new self-dual code of length 66 by a Fy extension of the
previously constructed self-dual code of length 64 (Table 7.3). Finally, we find new self-dual codes
of length 68 from a [, + ulF5 extension of the previously constructed self-dual code of length 64 and
sequences of neighbours of this code (Tables 7.4, 7.5, 7.6, 7.7 and 7.8). Magma ([5]) was used to
construct all of the codes throughout this section.

The possible weight enumerators for a self-dual Type I [60, 30, 12]-code is given in [20,28] as:

Weo1 = 1+ 3451y" + 24128y™ + 336081y"0 + - - - |
Weoo = 1+ (25554 643)y"? + (33600 — 3843) y** +---,0 < 3 < 10.

Extremal singly even self-dual codes with weight enumerator Wg; and Wy are known ([57]) for

Be{0,1,...,810}.

Firstly, we construct the [30, 15, 6] code when p = 5. The calculation on Magma is given in Appendix
A.5. These binary codes are lifted over Fy 4+ ulF5; and we construct the following code:

Table 7.1: Self-dual codes of length 60 (codes over Fy 4+ ulFy when p = 5)

‘Cz‘ ahbl Cl ‘ (az, by, c2) ‘ (as, bs, c3) ‘ U1 ‘ ) ‘ U3 ‘AUt(Ci)‘
‘1‘ U, U, u) ‘ (u,u,1) ‘ (1,u,0) ‘uuqu ‘ uO,O,u,l)‘(u,u+1,u+1,u70)‘23-3-5‘

The possible weight enumerators for a self-dual Type I [64, 32, 12]-code are given in [20,28] as:

Wean = 14 (1312 +1683)y" + (22016 — 643) y™* +--- |14 < § < 284,
Weso = 1+ (13124 1683) y*? + (23040 — 648) y™* +--- ,0 < B < 277.

Extremal singly even self-dual codes with weight enumerators W41 are known ([1,39,100]) for the
following;:

g [ 14.16,18,19,20,22,24,25,26,28,29, 30,32, 34,
35, 36, 38, 39, 44, 46, 49, 53, 54, 58, 59, 60, 64, 74
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and extremal singly even self-dual codes with weight enumerator W, o are known for

ge{ 0::40,41,42,44,45,46,47, 48,49, 50, 51, 52, 54, 55, 56, 57, \ (3139}
58,60, 62, 64, 69, 72, 80, 88, 96, 104, 108, 112, 114, 118, 120, 184 19U

The weight enumerators of an extremal self-dual code of length 66 is given in [28] as follows:

Wee = 1+ (858+88)y"* + (18678 — 248)y** + -+ where 0 < 3 < 778,
Weso = 1+ 1690y" +7990y™ + -+ and
Wees = 1+ (858 +83)y™* + (18166 — 243)y™* + - - - where 14 < < 756.

Together with the codes recently obtained in [1] and the codes from [68], [69] and [37], extremal
singly even self-dual codes with weight enumerator Wes 1 are known for

B€{0,1,2,3,5,6,...,94,100, 101, 115}
and extremal singly even self-dual codes with weight enumerator Wy 3 are known for
g€ {22,23,...,92}\ {89,91}.
The known weight enumerators of a self-dual [68, 34, 12];-code are as follows ([20,28]):

Wesa = 1+ (442 +48)y" + (10864 — 83)y™* + ...
Weso = 14 (442 +48)y" + (14960 — 83 — 256~)y** + ...

where 0 < < 9. Codes have been obtained for Wgs » when ([40])

v=2, B €{2m|lm =29,...,100,103,104}; or f € {2m + 1|m = 32,...,81,84,85,86};
v =3, B {2mlm =39,...,92,94,95,97,98, 101, 102}; or
B € {2m + 1|m = 38,40,43,...,77,79,80,81,83,87,88,89,96};
v=4, B € {2m|m = 43,46, ...,58,60,...,93,97,98,100}; or
B e {2m + 1jm =48,...,55,57,58,60,61,62, 64,68, ...,72, 74,78, 79, 80, 83, 84, 85, 89, 95};
v =5 with 8 € {101,105,109,111,...,182,187,189,191,192,193,195,198,200,201,202,211,213}
v =6, € {131,133,137,...,202,203, 206, 207, 210} ;
=7, Be{Tm|m=14,...22,28,...,39,42} or f € {155,...,199} ;
v =8, Be{180,...,221});
v =9, B e{186,...,226,228,230} ;

Applying Theorem 1.2.27 over Fy and Fy + ulFy (to the code constructed in Table 7.1), we construct
self-dual codes of lengths 64, 66 and 68 (Tables 7.2, 7.3 and 7.4). We replace 1 + u with 3 to save
space.

Let Mgy = Fi. Applying the kt-range neighbour formula (Definition 1.2.28), we obtain
We shall now separately consider the neighbours of N7, M) and M.
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Table 7.2: Self-dual codes of length 64 from Fy + ulFy extensions of codes from Table 7.2

[ 1 ]3] (uu0u3030u330301013ulull00ul3ll) [ 1 [14] 22 |

Table 7.3: Self-dual codes of length 66 from Fy extensions of codes from Table 7.3 where x; = 0 for
1 <0< 33.

‘ c ‘ X ‘ Wiee,i ‘ B ‘ Aut(&;) ‘
[ 1](00111100110110011001111001101011) [ 3 [21] 1

D;
1

Table 7.4: Self-dual codes of length 68 (Wgs2) from Fo + ulFy extensions of codes from Table 7.2

‘ c ‘ X ‘Q‘B‘Aut(}})‘
‘ 1+u ‘ (Ouu01%130130000031100u11331030u:0) ‘ 2 ‘ 67 ‘ 2 ‘

Table 7.5: " neighbour of N

[ [N T 7]
0 M1> (1010001001111100101010100100000001) 3 103
1 Mg) (1001010100001111001111100011111110) 4 124
2 M3> (1111101011111101111010000110110111) 5 134
3 /\/(4> (1010100011100001100011000110010010) 6 149
4 M5> (0010101000110001011010101011010110) 6 133
5 N@ (0000001001000111101111000000101110) 7 145
6 M7> (11()11111()1111111001111101010111011) 8 161
7 M8> (1001000001100010000111100000110010) 8 153
8 ./\/'(9> (0010111011010011100001110000101111) 9 177
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Table 7.6: New codes of length 68 as neighbours

/\/(i) M, (51/'357 L3655 7168) v B Af(i) M, (51135-, L3655 flfﬁs) 2 B
7 (1001110100001011001000010110001111) 6 135 7 (0110101110011000110111101110111101) 7 142
7 (1010101111010000011101101110100001) 7 144 7 (1010000001001100100011001110010110) 7 148
7 (1100000100000100000111110100011000) 7 150 7 (0000001101101010011100110000101010) 7 152
7 (1100001010100000101010001010000011) 8 156 7 (0111011101011111010001111101111101) 8 157
7 (1001110111011110111110110100110111) 8 158 7 (1100111101110001001101011111111010) 8 159
7 (0111111111111101111011010001001110) 8 160 7 (0000010100011010000011100000110110) 8 162
7 (1011100110110111110001111010111001) 8 163 7 (1000001100011101010001001011100111) 8 164
7 (0101101010111111100000010110011010) 8 165 7 (1100111110111111011000111101101101) 8 166
7 (0110110011000101101101010000111011) 8 167 7 (1110001001011001000010101101101111) 8 168
7 (0000110001100111100110010110000100) 8 169 7 (1101100001010100111111000110010000) 8 170
7 (0100111101011101000000001111011110) 8 171 7 (1101011100101001111000001010101101) 8 172
7 (0011011111010111110100010011001110) 8 173 7 (1000000111111110110000111001110100) & 174
7 (1000111010001101101000001010100111) 8 175 7 (1011011001110100101000011000010011) 8 176
7 (1101110100011011100010110101010001) 8 177 | 7 (0000001001111010000101101011000101) 8 178
7 (1010110111110111000100101010000110) 8 179

Table 7.7: New codes of length 68 as neighbours

/\/(i) M, (90357 L36, -5 1’68) v B Mi) M, (-Tfs.s-, L36, -5 1’68) 2 B
8 (1011100000000100011001011001010000) 6 134 8 (0100011011001110010010110000110000) 7 146
8 (1000010001101000000110110001001100) 8 154 8 (0100010111101000010111100101011101) 8 155

Table 7.8: New codes of length 68 as neighbours

Mi) M, (1?35= T365 -5 Ies) 2 B Mz) M; (1035, L3655 Isg) y 8
9 (1011000010111001011111100101111111) 9 169 9 (0111011011011100111010101011101011) 9 171
9 (1010111001101000111110101111110011) 9 173 9 (1000100101111111111101111101000011) 9 174
9 (1001010100111110011111000101100001) 9 175 9 (1100110001000010011000011000010100) 9 176
9 (0000111100010110110000010011101110) 9 178 9 (0000111111001110111000111100010001) 9 179
9 (0010110110000001011001111001010110) 9 180 9 (1101100001101011010000110010101111) 9 181
9 (1000010010001101110110100111100100) 9 182 9 (1111010101110110001110101110011011) 9 183
9 (0101001111100011111010011011111011) 9 184 9 (1011000000001100111100001100011001) 9 185
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Chapter 8

Conclusion

To conclude, we consider future work as an extension of this thesis. We reflect on the work pub-
lished and review the importance of the theory and numerical results. There are many opportunities
throughout this work to extend the theory or consider different paths; here are some of the sug-
gested routes for future research.

In chapter 2, the structure of U(F3:(C,, x Dg)) was established. Going forward, we could try to
extend the techniques used in this calculation to establish the structure of U (Fs: Da.3n).

Throughout chapters 3 to 7, codes over [y, Fy +ulFy and F4+ ulF, were mainly considered. In future
other alphabets could be considered. For example F3, F5, F7, Z4 or even non-commutative rings.
Additionally, larger groups could be considered as we have mainly dealt with small groups.

Let C is a self-dual [2n,n, d] code over F,. If d < 3|{5] + 3, then C is extremal of type III ([59]).
If d <2[%]| +2, then C is extremal of type IV ([59]). The techniques described in chapters 3 to 7
inclusively, could be used in order to find unknown extremal type III and type IV codes.

We established a new technique by combining group rings with well established techniques such as
the double circulant construction, four circulant construction, four block construction and quadratic
residue circulants. Future work could consider combining group rings with other well known tech-
niques, such as:

1. constructing self-dual codes with the assumption that the automorphism group of the codes
have a certain size; this technique assumes that the automorphsim group has a certain size
and builds the code based on this assumption. It has been extensively used since the early

1970’s ([7,38,64,65,103]).

2. constructing self-dual codes from groups acting on the affine polar graph; in [18], the authors
construct an extremely unusual extremal self-dual type I code of length 68 by considering the
action of Ag (the alternating group on 8 elements) on the affine polar graph.

Finally, constructing other classes of codes using group rings could be considered. In [62] and [63],
group rings were used to construct MDS codes and LDPC codes. In [83], group rings were used to
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construct LCD and LCP codes. However, there was no link to any type of well known elements
of group rings. Another possible avenue to explore would be to link certain well known group ring
elements to the construction of LCD and LCP codes.
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Appendix A

Magma Programs

In this section, we include a small selection of the programs implemented by MAGMA to construct
the codes in Chapters 3, 4, 5, 6 and 7.

A.1 Chapter 3

Here we present the program used to construct the [24, 12, 8] code using the group algebra Fy(C5 X
Dg) (Section 3.2.1).

t:=Cputime();
SetLogFile("C3D8.txt");

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,24,24)!0;

function cycgen(gg)
n:=4;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg,
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:=temp;
end for;
return M;
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e

fun
n
M

e

cou

for
for
for
for
for
for

vl
v2:
v3:
v4:
vb:
v6:

M1
M2:
M3:
M4 :
M5:
M6:

CM:
[
M1,

nd function;

ction revcycgen(gg)
=4,
:=RMatrixSpace(Rk,n,n)!0;
for k:=1 to n do

M[k] :=gg;

temp:=gg;

for t:=2 to n do

temp [t-1] :=gg[t];

end for;
temp[n] :=gg[1];
gg:.=temp,
end for;
return M;
nd function;
nter:=0;
i1:=0 to 1 do for i2:=0 to 1 do
i3:=0 to 1 do for i4:=0 to 1 do
i5:=0 to 1 do for i6:=0 to 1 do
i7:=0 to 1 do for i8:=0 to 1 do
i9:=0 to 1 do for i10:=0 to 1 do
i11:=0 to 1 do for i12:=0 to 1 do
:=RSpace(Rk,4)![i1,i2,i3,i2];

=RSpace(Rk,4)![i4,i5,16,1i5];
=RSpace(Rk,4)![i4,i5,16,1i5];
=RSpace(Rk,4) ! [i7,1i8,19,1i1+i3+i7+i8+19];
=RSpace(Rk,4)![i110,111,i12,i4+i6+i10+i11+i12];
=RSpace(Rk,4)!'[i10,111,i12,i4+i6+i10+i11+i12];

:=cycgen(vl);

=cycgen(v2);
=cycgen(v3);
=revcycgen(v4) ;
=revcycgen(v5) ;
=revcycgen(v6) ;

=BlockMatrix (6,6,

M2,M3,M4,M5,M6,
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M3,M1,M2,M6,M4,M5,
M2,M3,M1,M5,M6,M4,
M4 ,M5,M6,M1,M2,M3,
M6,M4,M5,M3,M1,M2,
M5,M6,M4,M2,M3,M1
1);

if CM*CM eq Mtempl and Rank(CM) eq 12 and MinimumWeight(LinearCode(CM)) eq 8 then
M:=Append(M,CM) ;
end if;

end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;

#M;

r1:=RSpace(Rk,4)![1,0,0,0];
r2:=RSpace(Rk,4)![0,0,0,0];
r3:=RSpace (Rk,4) ! [0,0,0,0]
r4:=RSpace(Rk,4)![1,1,0,1];
r5:=RSpace(Rk,4)![0,1,1,0];
r6:=RSpace(Rk,4)![0,1,1,0];

b

T1l:=cycgen(rl);
T2:=cycgen(r2);
T3:=cycgen(r3);
T4:=revcycgen(rd) ;
T5:=revcycgen(rb) ;
T6:=revcycgen(r6) ;

L:=BlockMatrix (6,6,
[
T1,T2,T3,T4,T5,T6,
T3,T1,T2,T6,T4,T5,
T2,T3,T1,T5,T6,T4,
T4,75,T6,T1,T2,T3,
T6,T4,T5,T3,T1,T2,
T5,T6,T4,T2,T3,T1
DK

C:=LinearCode(L);
dm:=MinimumWeight (C) ;
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AutomorphismGroup(C) ;
WeightDistribution(C);

print Cputime(t);

A.2 Chapter 4

Here we present the program used to construct the [16, 8, 4] code in Example 4.1.2 using the group
algebra F,C3. The results are shown in Table 4.4

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,8,8)!0;

for i:=1 to 8 do
Mtempl[i,i]:=1;
end for;

function cycgen(gg)
n:=4,;
M:=RMatrixSpace(Rk,n,n)!0;
for k:=1 to n do
M[k] :=gg;
temp:=gg,
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp,
end for;
return M;
end function;

function revcycgen(gg)
n:=4;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=2 to n do
temp [t-1] :=gg[t];
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e

cou

for
for
for
for

vl
v2:
v3:

M1
M2:
M3:
CM:
M1,
M3,
if

M:=

end

end
end

#M;

for

M1:

C:=

end for;
temp[n] :=gg[1];
gg:.=temp,
end for;
return M;
nd function;

nter:=0;

i1:=0 to 1 do for i2:=0 to 1 do
i3:=0 to 1 do for i4:=0 to 1 do
i5:=0 to 1 do for i6:=0 to 1 do
i7:=0 to 1 do for i8:=0 to 1 do

:=RSpace(Rk,4) ! [i1,i2,i3,i4];

=RSpace(Rk,4)![i5,i6,17,i8];
=RSpace (Rk,4) ! [i7,18,15,16];

:=cycgen(vl);

=revcycgen(v2) ;
=revcycgen(v3) ;

=BlockMatrix (2,2, [
M2,
M1]1);
CM*Transpose (CM) eq Mtempl then
Append (M,CM) ;
if;

for;end for;end for;end for;
for;end for;end for;end for;

i:=1 to #M do
=HorizontalJoin(Mtempl,M[i]);

LinearCode (M1); dm:=MinimumWeight (C);
if (dm ge 4) and IsSelfDual(C) then

eql:=false;
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for i2:=1 to #codeF2 do

eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;
if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M1;
AutomorphismGroup(C) ;

WeightDistribution(C) ;
ok ok Kok KR KKK KK KKKk 1 0

end if;
end if;
end for;

print Cputime(t);

A.3 Chapter 5

Here we present the program used to construct the [80,40, 14] code using the group algebra Fy Dsg
shown in Table 5.5.

Rk:=GF(2);
codeF2:=[];
M:=[1;

function cycgen(gg)
n:=2;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp;
end for;
return M;
end function;
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function cycgenl(gg)
n:=19;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp;
end for;
return M;
end function;

Mtempl:=RMatrixSpace(Rk,38,38)!0;
for i:=1 to 38 do
Mtempl[i,i]:=1;
end for;

ConstMat := func< n, r, c |
RMatrixSpace(Rk, r, ¢) ! [ n : i in [1..r*c]]

MtempO:=RMatrixSpace(Rk,40,40)!0;

counter:=0;

for 11:=0 to 1 do for i2:=0 to 1 do
for i3:=0 to 1 do for i4:=0 to 1 do
for i5:=0 to 1 do for i6:=0 to 1 do
for i7:=0 to 1 do for i8:=0 to 1 do
for i9:=0 to 1 do for i10:=0 to 1 do
for 111:=0 to 1 do for 112:=0 to 1 do
for 113:=0 to 1 do for i14:=0 to 1 do
for i15:=0 to 1 do for i116:=0 to 1 do
for i17:=0 to 1 do for i18:=0 to 1 do
for 1i19:=0 to 1 do for i20:=0 to 1 do
for 121:=0 to 1 do for 122:=0 to 1 do
for 123:=0 to 1 do for i24:=0 to 1 do
for i25:=0 to 1 do for i26:=0 to 1 do

v1:=RSpace(Rk,2)![0,1];
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Bl:=cycgen(vl);

Al:=ConstMat(0,1,19);
A2:=ConstMat(0,1,19);

B2:=BlockMatrix (2,2, [
Al,A2,
A2,A1]);

v2:=RSpace(Rk,2) ! [0,0];
B3:=cycgen(v2);

A3:=ConstMat(0,1,19);
A4 :=ConstMat(1,1,19);

B4:=BlockMatrix (2,2, [

A3,A4,A4,A3]);

T1:=HorizontalJoin(B1,B2) ;T2:=HorizontalJoin(T1,B3) ;T3:=HorizontalJoin(T2,B4);
v3:=RSpace(Rk,19)![0,0,0,0,0,0,i1,i2,i3,i4,i5,16,17,18,19,110,1i11,1,1];
v4:=RSpace(Rk,19)![0,0,112,i13,i14,i15,116,117,118,119,i20,121,122,i23,i24,i25,126,1,1];
v4A:=RSpace(Rk,19)![1,0,0,112,i113,i14,i15,116,117,118,119,i20,121,122,i23,i24,i25,126,1];
M3:=cycgenl(v3);

M4 :=cycgenl(v4);

M4A:=cycgenl (v4A);

B5:=BlockMatrix (2,2,

[M3,M4,

M4A,M3]);

H1:=HorizontalJoin(Transpose(B2) ,Mtempl); H2:=HorizontalJoin(H1,Transpose(B4)); H3:=Horizo
CM:=VerticalJoin(T3,H3);

if CM*Transpose(CM) eq MtempO then M:=Append(M,CM);

end if;

end for;end for;end for;end for;
end for;end for;end for;end for;
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end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;

#M;
for i:=1 to #M do

C:=LinearCode(M[i]); dm:=MinimumWeight(C);
if (dm ge 12) and IsSelfDual(C) and not(IsDoublyEven(C)) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;
if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M[i];
AutomorphismGroup (C) ;

ddd:=PartialWeightDistribution(C,16); ddd;
W skeok ok ok kKoK ok ok Kok ok kKoK ok ok kok 1 s
end if;
end if;
end for;
print Cputime(t);

A.4 Chapter 6

Here we present the program used to construct the [32, 16,6 — 8] codes using the the groups Cys and
Cs. These binary codes are then lifted over Fy + ulF5 to obtain the codes in Table 6.2

Rk:=GF(2);
codeF2:=[];
M:=[];

Mtempl:=RMatrixSpace(Rk,16,16)!0;
for i:=1 to 16 do
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Mtempl[i,i]:=1;
end for;

Mt2:=RMatrixSpace(Rk,8,8)!0;

Mt3:=RMatrixSpace(Rk,8,8)!0;
for i:=1 to 8 do
Mt3[i,i]:=1;
end for;

function cycgen(gg)
n:=8;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg,
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:=temp;
end for;
return M;
end function;

function revcycgen(gg)
n:=8;
M:=RMatrixSpace(Rk,n,n)!'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=2 to n do
temp [t-1] :=gg[t];
end for;
temp[n] :=gg[1];
gg:=temp,
end for;
return M;
end function;

ConstMat := func< n, r, c |



RMatrixSpace(Rk, r, ¢) ! [ n : i in [1..r*c]] >;

counter:=0;

for i1:=0 to 1 do for i2:=0 to 1 do
for i3:=0 to 1 do for i4:=0 to 1 do
for i5:=0 to 1 do for i6:=0 to 1 do
for i7:=0 to 1 do for i8:=0 to 1 do
for i9:=0 to 1 do for i10:=0 to 1 do
for i11:=0 to 1 do for i112:=0 to 1 do
for i13:=0 to 1 do for i14:=0 to 1 do
for 1i15:=0 to 1 do for i16:=0 to 1 do
for 117:=0 to 1 do for 118:=0 to 1 do
for 119:=0 to 1 do for 120:=0 to 1 do
for i21:=0 to 1 do for i22:=0 to 1 do
for i23:=0 to 1 do for i24:=0 to 1 do

el:=RSpace(Rk,8)![i1,i2,i3,i4,1i5,i6,17,18];
El:=cycgen(el);

f1:=RSpace(Rk,8)![i9,i10,i11,i112,i13,i14,i15,i16];
Fl:=cycgen(f1);

gl:=RSpace(Rk,8)![i17,118,i19,i20,121,i22,123,124];
Gl:=revcycgen(gl);

CM:=BlockMatrix(2, 2,
[

El1,F1+G1,

F1+G1,E1

D;

if CM*Transpose(CM) eq Mtempl then
M:=Append (M, [E1,F1,G1]);
end if;

end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
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end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;

#M;
for i:=1 to #M do

M1:=BlockMatrix(2, 4,

[

Mt3,Mt2,M[i] [1],M[i] [2]+M[i] [3],
Mt2,Mt3,M[i] [2]+M[i] [3],M[i] [1]
1);

C:=LinearCode(M1); dm:=MinimumWeight (C);
if (dm ge 6) and IsSelfDual(C) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;
if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M[i];
AutomorphismGroup(C) ;

PartialWeightDistribution(C,12);
W skok ok o ok skok ok ok kKoK ok Rk Kok ok ok okok 1 s
end if;

end if;

end for;

print Cputime(t);
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A.5 Chapter 7

Here we present the program used to construct the [30, 15, 6] codes when p = 5. These binary codes
are then lifted over Fy + ulFy5 to obtain the codes in Table 7.1.

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,15,15)!0;

function cycgen(gg)
n:=5;
M:=RMatrixSpace(Rk,n,n)!0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp,
end for;
return M;
end function;

ConstMat := func< n, r, c |
RMatrixSpace(Rk, r, ¢) ! [ n : i in [1..r*c]] >;

counter:=0;

for 11:=0 to 1 do for i2:=0 to 1 do
for i3:=0 to 1 do for i4:=0 to 1 do
for i5:=0 to 1 do for i6:=0 to 1 do
for i7:=0 to 1 do for i8:=0 to 1 do
for i9:=0 to 1 do for i10:=0 to 1 do
for 111:=0 to 1 do for 112:=0 to 1 do
for 113:=0 to 1 do for i114:=0 to 1 do
for i15:=0 to 1 do for i16:=0 to 1 do
for i17:=0 to 1 do for i18:=0 to 1 do
for 1i19:=0 to 1 do for i20:=0 to 1 do
for 121:=0 to 1 do for 122:=0 to 1 do
for 123:=0 to 1 do for i24:=0 to 1 do

102



bl:=RSpace(Rk,5)![i1,i2,13,1i3,1i2];
B1:=cycgen(bl);

b2:=RSpace(Rk,5) ! [i4,i5,16,16,15] ;
B2:=cycgen(b2);

b3:=RSpace(Rk,5)![i7,i8,19,19,18];
B3:=cycgen(b3);

m1:=RSpace(Rk,5) ! [i10,i11,i12,113,114];
M1:=cycgen(ml) ;

m2:=RSpace(Rk,5)![i15,i16,117,118,i19];
M2:=cycgen(m2) ;

m3:=RSpace(Rk,5)![120,121,122,123,124];
M3:=cycgen(m3) ;

CM:=BlockMatrix(3, 6,
[

B1,B2,B3,M1,M2,M3,
B3,B1,B2,M3,M1,M2,
B2,B3,B1,M2,M3,M1

DK

if CM*Transpose(CM) eq Mtempl then
M:=Append(M,CM) ;
end if;

end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;

#M;
for i:=1 to #M do
M1:=M[i];

C:=LinearCode(M1); dm:=MinimumWeight (C);
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if (dm ge 6) and IsSelfDual(C) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;
if not eql then

counter:=counter+i;

counter;

codeF2[counter] :=C;
M1;
AutomorphismGroup(C) ;

PartialWeightDistribution(C,12);
W skok sk skok Kok ok ok ok Kok KoKk ok ok 18

end if;
end if;

end for;
print Cputime(t);
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