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Abstract

The main research presented in this thesis is around constructing binary self-dual codes
using group rings together with some well-known code construction methods and the study
of group codes and composite group codes over different alphabets. Both these families of

codes are generated by the elements that come from group rings.

A search for binary self-dual codes with new weight enumerators is an ongoing research
area in algebraic coding theory. For this reason, we present a generator matrix in which we
employ the idea of a bisymmetric matrix with its entries being the block matrices that
come from group rings and give the necessary conditions for this generator matrix to
produce a self-dual code over a finite commutative Frobenius ring. Together with our
generator matrix and some well-known code construction methods, we find many binary
self-dual codes with parameters [68, 34, 12] that have weight enumerators that were not
known in the literature before.

There is an extensive literature on the study of different families of codes over different
alphabets and specifically finite fields and finite commutative rings. The study of codes
over rings opens up a new direction for constructing new binary self-dual codes with a rich
automorphism group via the algebraic structure of the rings through the Gray maps
associated with them. In this thesis, we introduce a new family of rings, study its algebraic
structure and show that each member of this family is a commutative Frobenius ring.
Moreover, we study group codes over this new family of rings and show that one can
obtain codes with a rich automorphism group via the associated Gray map.

We extend a well established isomorphism between group rings and the subring of the

n X n matrices and show its applications to algebraic coding theory. Our extension enables
one to construct many complex n X n matrices over the ring R that are fully defined by
the elements appearing in the first row. This property allows one to build generator
matrices with these complex matrices so that the search field is practical in terms of the
computational times. We show how these complex matrices are constructed using group
rings, study their properties and present many interesting examples of complex matrices

over the ring R.



Using our extended isomorphism, we define a new family of codes which we call the
composite group codes or for simplicity, composite G-codes. We show that these new codes
are ideals in the group ring RG and prove that the dual of a composite G-code is also a
composite G-code. Moreover, we study generator matrices of the form [I,, | Q(v)], where I,
is the n x n identity matrix and Q(v) is the composite matrix that comes from the extended
isomorphism mentioned earlier. In particular, we show when such generator matrices
produce self-dual codes over finite commutative Frobenius rings. Additionally, together
with some generator matrices of the type [I,, | (v)] and the well-known extension and
neighbour methods, we find many new binary self-dual codes with parameters [68,34,12].

Lastly in this work, we study composite G-codes over formal power series rings and finite
chain rings. We extend many known results on projections and lifts of codes over these
alphabets. We also extend some known results on y-adic codes over the infinite ring R..
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Chapter 1

Introduction

In this thesis, we mainly study codes over rings. We give the standard definitions and results
on codes and codes over rings required to understand the work presented in later chapters,
however, it is assumed that the reader is familiar with the basic definitions, results and
notation from group theory, ring and module theory, algebraic coding theory and linear
algebra. Most of the chapters in this thesis are work either submitted or accepted for
publication. We now give a brief summary of each chapter.

Chapter 1: In this chapter, we give the standard definitions and results on rings, codes
over rings and finite fields. We recall some known techniques such as; the extension and
neighbour methods, for constructing codes over rings that we employ in later chapters of
this work. We also give the definitions of some well-known matrices and recall the
definitions and basic results on group rings. We next recall an established isomorphism
between group rings and a subring of the n x n matrices. We finally present the definition

and some results on group codes over finite commutative Frobenius rings.

Chapter 2: In the second chapter, we present a generator matrix in which we employ the
idea of a bisymmetric matrix whose entries are the block matrices that come from group
rings. We give the necessary conditions that this generator matrix has to meet in order to
produce a self-dual code over a finite commutative Frobenius ring of characteristic 2. We
also construct, together with our generator matrix, the well-known extension and
neighbour methods, new binary self-dual codes with parameters [68, 34, 12]. This chapter is
joint work with Dr. Joe Gildea, Dr. Abidin Kaya and Dr. Alexander Tylyshchak. The
results presented in this chapter are published in [35].

Chapter 3: This chapter is joint work with Prof. Steven Dougherty, Dr. Joe Gildea and
Dr. Serap Sahinkaya. Here, we introduce a new family of finite commutative Frobenius
rings, B;x, whose base field is the finite field F,» and study its algebraic structure. We
study group codes, self-dual group codes and reversible group codes over this new family of



rings. We define a Gray map for the new family of rings and study projections and lifts of
group codes under this Gray map. Moreover, we show that the Gray images of the group
codes have a rich automorphism group. The work presented in this chapter has been
accepted for publication and is to appear in the Cryptography and Communications,

Discrete Structures, Boolean Functions and Sequences journal.

Chapter 4: In this chapter, which is joint work with Prof. Steven Dougherty and Dr. Joe
Gildea, we extend the well established isomorphism between group rings and a subring of
the n x n matrices. Our extension enables one to construct complex n X n matrices over
the ring R which have applications in algebraic coding theory as we show in later chapters.
We present a number of theoretical results on the extended isomorphism and give many
interesting examples of the complex matrices. The results presented in this chapter are
published in [I§].

Chapter 5: Here, we define composite group codes which are codes generated by the
group ring elements. We study the algebraic properties of these codes and we also study
self-dual composite group codes. Moreover, we present a generator matrix which consists
of the extended isomorphism and show when such generator matrix produces self-dual
codes over finite commutative Frobenius rings of characteristic 2. We also construct,
together with the generator matrix, the well-known extension and neighbour methods, new
binary self-dual codes with parameters [68,34,12]. This chapter is joint work with Prof.
Steven Dougherty, Dr. Joe Gildea and Dr. Abidin Kaya, and can be found in [21].

Chapter 6: In this chapter, we give an application of the extended isomorphism from
Chapter 4 and the generator matrices from Chapter 5. Namely, we define a number of
generator matrices using the extended isomorphism with groups of orders 8 and 4 and give
the conditions for which each generator produces self-dual codes over a finite commutative
Frobenius ring. Together with these generator matrices, the well-known extension and
neighbour methods, we construct new binary self-dual codes with parameters [68, 34, 12].
This chapter is joint work with Prof. Steven Dougherty, Dr. Joe Gildea and Dr. Abidin
Kaya, and can be found in [19].

Chapter 7: Here, we study composite group codes over formal power series rings and
finite chain rings. We show that these codes are ideals in the group ring R, G and that the
dual of a composite group code is also a composite group code in this setting. Moreover,
we study projections and lifts of composite group codes over finite chain rings and over
formal power series rings. Additionally, we extend some known results on - adic group
codes over R, to composite group codes and study these codes over principal ideal rings.
The work presented in this chapter is published in [56].



Chapter 8: In the final chapter of this work, we summarise the work and results
presented in this thesis. We highlight the importance of the results presented in all the
previous chapters and critically examine what could have been done differently. We also
give possible directions for future research as either extensions of applications of the results
presented in this thesis.

1.1 Self-Dual Codes

The study of self-dual codes over finite fields and rings is an ongoing research area in coding
theory. This is mainly due to their connections to other areas in Mathematics such as;
combinatorics, design theory and number theory. In [2], it is shown that one can produce
interesting designs using self-dual codes over fields. In [3], it is shown that one of the most
powerful techniques for producing optimal unimodular lattices uses self-dual codes over
rings. Moreover, the well-known proof of the non-existence of the projective plane of order
10 used the theory of binary self-dual codes, please see [57] for a complete explanation of
this proof.

Self-dual codes are also interesting in their own rite — the construction and enumeration
of binary self-dual codes of different lengths have gained the attention from many people.
It is a well-known fact that a binary self-dual code must have an even length, dimension
of half its length and a minimum weight d (please see [49] for details). We refer to such a
code as a binary [2n,n,d] self-dual code. The desirable property of a binary self-dual code
is that it has the maximum value of d for a given length 2n. It is well-known that a linear
code with the minimum distance d can detect up to d — 1 or correct up to L@j errors in
any codeword (please see [49] for details), this is why, in a binary self-dual code, we want
the value of d to be as large as possible for a given length. The bounds for the minimum
distance d of self-dual codes, for certain values of n, are given in [62]. A traditional, and
probably the most known technique for constructing binary self-dual codes is to consider
a generator matrix of the form (I, | A), where I, is the n X n identity matrix and A is
some n X n matrix over the finite field of order 2, usually defined by the elements appearing
in the first row. Please see [39] [55] for some examples of this technique. Another known
technique to construct binary self-dual codes with is to consider generator matrices that
produce codes with a fixed order of the automorphism group, please see [65, [66, [67] for very
detailed examples of this approach. In early 1990s, a series of landmark papers [7), [45, 4]
were published which showed that linear codes can be obtained as images, under a Gray
map, of codes over rings. Since then, many researchers have studied codes over different
rings (commutative and non-commutative) and their associated Gray maps which can lead
to constructing new binary self-dual codes. In [64], J. Wood, shows that the class of rings
that are an acceptable alphabet for coding theory and the study of linear codes, is the



class of Frobenius rings. This is because the two foundational and well-known MacWilliams
Theorems apply to this particular class of rings, please see [60] for a detailed description
of these two theorems and why they are so important in coding theory. One can see [24],
for some examples of Frobenius rings and their associated Gray maps. Some interesting
examples of constructing binary self-dual codes from codes over rings via their associated
Gray maps can be found in [25] 26].

In this thesis, we want to give more possible ways of constructing new binary self-dual
codes that were not known in the literature before. For this reason, we introduce new ideas
and extend existing techniques to obtain new extremal binary self-dual codes of length 68.
We present a number of generator matrices of the form (I, | A), where I, is the n x n
identity matrix and A is an n X n matrix over a finite commutative Frobenius ring, derived
from group rings, and fully defined by the elements appearing in the first row. Additionally,
we give a generator matrix in which the identity matrix is replaced with a block matrix and
the matrix A is replaced with a 4 x 4 bisymmetric matrix where the blocks come from group
rings. We use these generator matrices together with some well-known code construction
methods, to obtain many self-dual codes over a finite commutative Frobenius ring, whose
binary images, under some Gray maps, are self-dual codes of length 68 with new parameters
in their weight enumerators. We next extend a well established isomorphism between group
rings and a subring of the n X n matrices so that one can construct very complex matrices
over any ring. We use this extended isomorphism to introduce a new family of codes, called
composite group codes which are generated from group ring elements, where the ring is a
finite commutative Frobenius ring. We show that binary self-dual with parameters [72, 36, 16]
cannot have the form of a composite group code. Moreover, we present a new family of finite
Frobenius rings, give its associated Gray map and we study group codes, self-dual group
codes and reversible group codes over this new family of Frobenius rings. Additionally, we
study the new family of codes, the composite group codes over formal power series rings
and finite chain rings and show that one can construct an infinite family of composite group

codes from just one composite group code.

1.2 Rings and Codes over Rings

In this work, we study different families of codes over finite commutative rings. That is,
we shall assume throughout this text that a ring has a multiplicative identity and that the
multiplication is commutative.

We start by recalling some basic definitions on rings, codes and codes over rings to
understand the notation used in later chapters.

Definition 1. ([33/) Let R be a ring.



(1) A non-zero element a of R is called a zero-divisor if there is a non-zero element b
in R such that either ab =0 or ba = 0.

(2) Assume R has an identity 1 # 0. An element u of R is called a unit in R if there is
some v in R such that uv = vu = 1. The set of units of R is denoted by U(R).

Definition 2. ([33]) Let M, (R) denote the ring of n X n matrices with coefficients from
R.

Definition 3. ([33]) The characteristic of a ring R is the smallest positive integer n such
that 1 +14---4+1=0 (n times) in R; if no such integer exists the characteristic of R is
said to be 0.

Definition 4. ([33]) Let R be a ring, let I be a subset of R and let r € R.
(1) rI={ra|aecl}andIr={ar|acl}.
(2) A subset I of R is a left ideal of R if

(i) 1 is a subring of R, and

(ii) I is closed under left multiplication by elements from R, i.e. vI C I for allT € R.
Similarly I is a right ideal if (i) holds and in place of (ii) one has

(ii)’ I is closed under right multiplication by elements from R, i.e. Ir C I for all
r e R.

(8) A subset I that is both a left ideal and a right ideal is called an ideal (or, for added
emphasis, a two-sided ideal) of R.

Definition 5. ([12]) An ideal a is maximal if a is not properly contained in any non-trivial
1deal.

Definition 6. ([12]/) Let a be an ideal of a finite commutative ring. We call the smallest
t > 1 such that a® = a'™ for i > 0 the index of stability of a.

Definition 7. ([12]) A principal ideal ring is a ring in which each ideal is generated by

a single element, that is every ideal a can be written as a = (a) for some element a.

Definition 8. ([12/) A chain ring is a principal ideal ring such that the ideals are linearly
ordered by set theoretic containment.

Definition 9. ([33]) Let R and S be rings.

(1) A ring homomorphism is a map ¢ : R — S satisfying



(i) ¢(a+0b) = ¢(a)+ p(b) for all a,b € R and
(i) o(ab) = p(a)p(b) for all a,b € R.

(2) The kernel of the ring homomorphism @, denoted ker o, is the set of elements of R
that map to 0 in S.

(8) A bijective ring homomorphism is called an isomorphism.

In some of the later chapters, we use the generalised Chinese Remainder Theorem to
prove some results with. For this reason, we now recall it.

Theorem 1. ([12]) Let R be a finite commutative ring, with mazimal ideals my, ..., mg
where the index of stability of m; is e;. Then the map ¥ : R — [[_, R/m{’, defined by
U(x) = (z+mi,...,x+m), is a ring isomorphism.

Definition 10. ([33]) Let R be a ring. A left R-module or a left module over R is a
set M together with

(1) a binary operation + on M under which M is an abelian group,

(2) an action of R on M (that is, a map R x M — M ) denoted by rm, for all r € R and
for all m € M which satisfies

(a) (r+ s)m =rm+ sm, for allr,s € R,m € M,

(b) (rs)m =r(sm), for allr,s € R,m € M,

(¢c) r(m+n)=rm+rn, for allv € R,m,n € M, and
(d) 1m = m, for allm € M.

The description “left”in the above definition indicates that the ring elements appear on
the left; “right” R-modules can be defined analogously.

Definition 11. ([33]) Let R be a ring and M be a left R-module. For any submodule N of
M, the annihilator of N s the ideal of R defined by

Ann(N)={re R|rm =0 for alln € N}.
Definition 12. ([33]) Let R be a ring and let M and N be R-modules.

(1) A map ¢ : M — N is an R-module homomorphism if it respects the R-module
structures of M and N, i.e.

(a) p(x +y) =p(x)+p(y), for al z,y € M and
(b) o(azx) = ap(x), for all « € R,z € M.
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(2) An R-module homomorphism is an isomorphism (of R-modules) if it is both injective
and surjective. The modules M and N are said to be isomorphic, denoted M = N, if
there is some R-module isomorphism o : M — N.

(3) If ¢ : M — N is an R-module homomorphism, let ker ¢ ={m € M | p(m) = 0} (the
kernel of ¢) and let (M) ={n € N | n = @(m) for some m € M} (the image of ¢,
as usual).

(4) Let M and N be R-modules and define Homg(M,N) to be the set of all R-module
homomorphism from M into N.

We now give a description of Frobenius rings. We specifically show how one can ensure
that a ring is indeed a Frobenius ring. These tools will be used in one of the later chapters.

Definition 13. ([12]) Let M be the R-module. A character x is a homomorphism given
by x : M — C*. We define M = Homy (M, C*) to be the set of all characters associated to
M. We note that this set forms a multiplicative abelian group. If M is a left R-module over
a ring R, then the character group M isa right R-module called the character module
associated to M. The module action in the character module for x € M s defined by

X" (m) = x(rm)

for allm € M and r € R. The character module can also be defined in the same way for
right R-modules.

Theorem 2. ([12]) Suppose R is a finite ring. The following are equivalent:
(1) The ring R is Frobenius.
(2) As a left module, R = gR.
(3) As a right module, R Rp.

Example 1.2.1. The ring Z,, where p is an integer is a Frobenius ring. The direct product
of the two rings Z,, and Z,,, where n and m are integers, is a Frobenius ring. For example,
the ring Z1g is a Frobenius ring of order 16. The ring Zs X Zs is a Frobenius ring of order
16.

Definition 14. ([12]) Let R be a Frobenius ring. Let ¢ : R — R be the module isomorphism.
Set x = ¢(1) so that ¢(r) = X" forr € R. We call this character x a generating character
for R.

Theorem 3. ([12/) The finite commutative ring R is Frobenius if and only if R has a
generating character.



Theorem 4. ([I2]) Let x be a character of a finite commutative ring R. Then x is a
generating character if and only if ker (x) contains no non-zero ideals of R.

Example 1.2.2. Consider the following Frobenius ring Zis of order 16. Its generating
character is given by x(a) = (* where { = e e .

We now give the basic definitions on codes over finite commutative Frobenius rings. We
study codes specifically over this family of rings since both MacWilliams theorems for codes

over finite fields extend to Frobenius rings. We now state these two fundamental theorems.

Theorem 5. ([60]) Let C be a linear code over a finite field F, then every Hamming isometry
C — F™ can be extended to a monomial transformation.

This theorem allows us to define an equivalence on codes effectively as codes where one
can be transformed into the other via a monomial tranformation. In general, we want to

study codes up to this equivalence.

Theorem 6. ([60/) Let C be a linear code over IF, then

1

WCL(ZEJy) - |C|

We(z + (¢ — Dy, z —y).

With this theorem, we are able to give the weight enumerator of the orthogonal of a code
from the weight enumerator of a linear code.

In [64], J. Wood showed that the above two very important theorem for codes over finite
fields extend to codes over commutative Frobenius rings. This is why in this thesis, we
restrict our attention to this family of rings. Please see [12] for a very detailed explanation
of the two MacWilliams theorems. From now on, unless otherwise stated, we use R to

represent a finite commutative Frobenius ring.

Definition 15. ([12]) A code C over R of length n is a subset of R". If the code is a
submodule of R"™, then we say that the code is linear. If a code is a k-dimensional submodule
of R", then the code is denoted as an [n, k| linear code over R, where n is the length of the
code and k is the number of rows. The rows of the code C are called codewords.

Definition 16. ([12/) Let C be a linear code over R. Then, the orthogonal of C is defined
as:

Ct={veR"|[v,w]=0, YweC(C},

where [v,w]| = > vw; is the Euclidean inner-product.

Definition 17. ([12]) A code C is said to be self-orthogonal if C C Ct and self-dual if
C=CH



Definition 18. ([12]) Two codes C and C' are equivalent if C' can be formed from C by
permuting the coordinates of C.

Definition 19. ([12]) The automorphism group of a code C, denoted Aut(G), consists
of all permutations of the coordinates of the code that fix the code.

Definition 20. ([12]/) The Hamming weight of a vector v € R" defined as

wtp(v), (1.1)

is the number of non-zero entries of v. The minimum Hamming weight of a code C is
min{wty(v) | v € C,v # 0}, where 0 is the all-zero vector.

Definition 21. ([50/) A self-dual code C for which all the codewords have Hamming weight
divisible by four is called a Type II or doubly-even code. Otherwise C is called a Type I
or singly-even code.

Definition 22. ([12]) The minimum distance d of a code C over R is the minimum of
all the Hamming weights.

An [n, k,d]-code over R is an [n, k]-code over R with minimum distance d.

Definition 23. ([50/) A generator matriz for an [n,k|-code C is any k x n matrizx G
whose rows form basis for C.

Since in this work, we present a number of generator matrices for binary self-dual codes,
we now recall the well-known upper bounds on the minimum Hamming distance of such
codes.

Theorem 7. ([62]) Let d;(n) and d;;(n) be the minimum distances of a Type I and Type 11

binary self-dual code of length n, respectively. Then
n

| +4

and
dh(n) < 4Liﬂ4j +4 if n#22 (mod 24)

4] +6 if n=22 (mod 24).

Definition 24. ([50]) Self-dual codes meeting these bounds are called extremal. Self-dual
codes with the largest d for a specific length n are said to be optimal. FExtremal codes are
necessarily optimal but optimal codes are not necessarily extremal.

Definition 25. ([12]) Let C be a code over R = {ag,ay,...,a,—1}. The complete weight
enumerator for the code C is defined as:

r—1
Cwec(%o, Layy--- >$ar—1) = Z HxZZ(C)a (12)

ceC i=0

where there are n;(c) occurrences of a; in the vector c.

10



Definition 26. ([72]) A Gray map is a distance preserving map to the binary Hamming
space.

The Gray images of codes over rings tend to have a rich automorphism group which arises
from the algebraic structure of the rings. This means that one can construct codes over a
family of rings whose binary images are codes with parameters that can not be obtained
from other classical techniques. For example, in [24] and [26], it is shown that the binary
images of self-dual codes over a certain family of rings have automorphism groups whose

orders are multiples of 2%, please see [24] and [26] for details.

Corollary 1.2.1. ([12]) If C is a linear code over a finite commutative Frobenius ring R,
with |R| = r, then |C||C*| = |R"|.

We notice that the above corollary generalises the theorem which states that for linear
codes over fields dim(C) +dim(C*) = n, where n is the dimension of the ambient space - this
is one of the main differences between linear codes over finite fields and finite commutative
Frobenius rings. That is, for linear codes over finite fields we can employ the results from
vector spaces while for linear codes over Frobenius rings we need results from ring and
module theory. Please see [12] for a detailed description of the differences. The differences
between self-dual codes over finite fields and Frobenius rings are that they have applications
in different areas of Mathematics. For example, self-dual codes over fields can be used to
produce interesting designs (please see [2] for details) while self-dual codes over Frobenius
rings can produce optimal unimodular lattices (please see [3] for details).

1.2.1 Codes over the Rings R; = Fy + ulFy, and Fy + ulF,

In some of the later chapters, we obtain codes over some particular families of commutative
Frobenius rings of characteristic 2, known in the literature. For this reason, in this section,
we recall the definitions and key results on these families of rings. We start with the family
of rings that were defined in [24] and [26].

Definition 27. ([2]|]) Define the ring Ry, for k > 1 as
Ry, = Foluy, ug, . .., ug]/(u? = 0, wju; = wjug). (1.3)
These rings are commutative Frobenius rings of characteristics 2 and |Ry| = 22",

When k& = 0, then Ry = Fy. When k£ = 1, then Ry = Fy + u;[F5 or just Ry = Fy + ulF,.
When k = 2, then Ry = Fy + u1Fy + uslFy + uquslFs, and so on.

Lemma 1.2.2. ([2]]) An element v of Ry, that is a unit satisfies v* = 1. An element a of

Ry, that is a non-unit satisfies o* = 0.
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We now define the Gray map associated to Ry.

Definition 28. ([2]]) Let ¢ € Ry, then ¢ can be written as ¢ = a+ buy_1, where a,b € Ry_.
The Gray map ¢y = Ry — F%k s defined as:

Pk(C) = (Pr-1(b), Pr-1(a +b)). (1.4)

This map is a distance preserving map.

Theorem 8. ([26]]) Let C be a self-dual code over Ry, then ¢ (C) is a binary self-dual code
of length 2kn.

We now recall the basic definitions and results on the ring Fy + ulFy.

Definition 29. ([58]) Let F, = Fy(w) be the quadratic field extension of Fy, where w? 4+ w +
1=20. The ring
F4+UF4 :]F4[U]/<U2 = O>, (15)

1s a commutative Frobenius ring of size 16 and characteristic 2. Moreover, it is isomorphic
to Folw,u]/{u? = 0,w? + w+ 1 =0).

The ring Fy + ulF4 can be viewed as an extension of the ring Fy + ulF; and so we can
express any element of Fy + ulF, in the form aw 4+ bw uniquely, where a,b € Fy + ulF5; and
w=w

We now give the Gray maps for the ring Fy + uF,. The following two maps were defined
and studied in [13] [34].

g, (Fa)" — (F2)™
aw + bw — (a,b), a,b € F}

PFstur; ¢ (Fo + ulo)" — F2"
a+bu— (bya+b), a,beFy.

In [58], the above maps were generalized to the following:

Veyrurs - (Fa 4 ulFy)™ — (Fy + ulf)>"
aw + bw — (a,b), a,b € (Fy + ulFy)"

OFyrar, ¢ (Fy+ ulFy)" — F3
a+buw (bya+b), a,be Fy.

It was also shown in [58] that the above Gray maps preserve orthogonality in their
respective alphabets. Combining the results from [34] and [58] we have that if C C (Fy +
ulF4)™, then the binary codes: ¢p,1ur, © ¥r,+ur,(C) and ¥r, o @F, ur, (C) are equivalent to
each other.

Definition 30. ([58/) The Lee weight of an element in Fy + ulFy is defined to be the

Hamming weight of its binary image.

Definition 31. ([58]) Let ¢ and ¢’ be two codewords in (Fy + ulF4)". The Lee distance of
two codewords ¢ and ¢’ is the Lee weight of ¢ — c'.
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Proposition 1.2.3. ([58/) Let C be a code over Fy + uFy. If C is self-orthogonal, then so
are Yp,+ur, (C) and @p,+ur, (C). The code C is a Type I (resp. Type II) code over Fy + ulFy
if and only if op,+ur,(C) is a Type I (resp. Type II) Fy-code, if and only if Vg, ur, (C) is
a Type I (resp. Type II) Fy + ulFy-code. Furthermore, the minimum Lee weight of C is the
same as the minimum Lee weight of Vg, 1ur,(C) and pp, ur, (C).

The next corollary follows immediately from the proposition and we will use this result
in some of the later chapters to produce binary self-dual codes.

Corollary 1.2.4. ([58]) Suppose that C is a self-dual code over Fy + ulFy of length n and
minimum Lee distance d. Then @p,iur, © Ur,ur, (C) is a binary [4n,2n,d] self-dual code.
Moreover, the Lee weight enumerator of C is equal to the Hamming weight enumerator of

OFytuly © Ur,+ury (C). If C is Type I (Type II), then so is @r,1ur, © Vr,1ur, (C).

Throughout this work, we use the following notation for the elements of Fy + ulF, :

0 4> 0000, 1 > 0001, 2 ¢ 0010, 3 «» 0011,
4 5 0100,5 <+ 0101,6 <> 0110,7 «» 0111,
8 <+ 1000,9 ¢ 1001, A <> 1010, B <+ 1011,

C <+ 1100, D <5 1101, E < 1110, F <> 1111.

We use the ordered basis {uw,w,u,1} to express the elements of Fy + ulFy. For instance,
1 + uw corresponds to 1001, which is represented by the hexadecimal 9.

We finish this section by recalling some well-known techniques for obtaining self-dual
codes. We employ these techniques in some of the later chapters.

Theorem 9. ([28]) Let C be a self-dual code of length n over R and G = (r;) be a k X n
generator matrix for C, where r; is the i-th row of G, 1 < i < k. Let ¢ be a unit in R such
that ¢ = —1 and X be a vector in S™ with (X, X) = —1. Let y; = (r;, X) for 1 <i < k.
The following matriz

1 0| X

yr cyr | "

Y CYk | Tk

generates a self-dual code D over R of length n + 2.

Definition 32. ([37]) Two binary self-dual codes of length 2k are said to be neighbours

if their intersection has dimension k — 1. Let C be a binary self-dual code of length 2k and
x € F¥ —C then D = <<3:>L N C,x> is a neighbour of C.
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The above definition was extended in [37] to the following.

Definition 33. ([37]) Let Ny be a binary self-dual code of length 2n. Let o € F3" — N{g).
The the i"-range neighbour is defined as:

Mi+1) = <<9131>L ﬂMi)7$i> )
where Ni;1) is the neighbour of Ny and x; € F3" — Ny).

1.2.2 Codes over Formal Power Series Rings and Finite Chain
Rings

We recall the definitions and properties of a finite chain ring R and the formal power series
ring R.

Definition 34. ([30, [71]) A ring is called a chain ring if ils ideals are linearly ordered
by inclusion. In particular, this means that any finite chain ring has a unique maximal
tdeal. Let R be a finite chain ring. Denote the unique mazximal ideal of R by m, and let
7 be the generator of the unique mazimal ideal m. This gives that m = (¥) = R7, where
Ry = (7)) ={B7 | B € R}. We have the following chain of ideals:

R=(G"2G) 2 2(3) 2. (16)

The chain in (1.6 can not be infinite, since R is finite. Therefore, there exists i such
that (%) = {0}. Let e be the minimal number such that (7¢) = {0}. The number e is called
the nilpotency index of 4. This gives that for a finite chain ring we have the following:

R=(#"2G) 223 (L.7)
If the ring R is infinite then the chain in Equation (|1.6|) is also infinite.

Lemma 1.2.5. ([30,[31)]) Let R* denote the multiplicative group of all units in the ring R.
Let F = R/m = R/(7) be the residue field with characteristic p, where p is a prime number,
then |F| = q = p" for some integers q and r. We know that |F*| =p" — 1.

Lemma 1.2.6. ([29]) For any 0 # r € R there is a unique integer i, 0 < i < e, where e is
the nilpotency index of 7, such that r = p~*, with p a unit. The unit u is unique modulo

Je—i

v

Lemma 1.2.7. ([59]) Let R be a finite chain ring with mazimal ideal m = (%), where ¥
1s a generator of m with nilpotency index e. Let V- C R be a set of representatives for the

equivalence classes of R under congruence modulo . Then

(i) for all v € R there are unique ro,--- ,7c_1 € V such that r = 35, 17"
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(i) V] = [F;
(ii) |(¥)| = [F|"7 for 0 < j <e—1.
From Lemma [1.2.7, we know that any element a of R can be written uniquely as
a=ap+ay+ - +a 177

where the a; can be viewed as elements in the field F.
In the next definitions, v will indicate the generator of the ideal of a chain ring, not

necessarily the maximal ideal.

Definition 35. ([30, [31]) The ring R is defined as a formal power series ring:

R =Fly]] = {>_ ar'|a € F}.

Let i be an arbitrary positive integer. The rings R; are defined as follows:
R, = {(10 +ary+---+ ai_wi_1|ai € IF},

where v~ #£ 0, but v = 0 in R;. If i is finite or infinite then the operations over R; are
defined as follows:

i— i—1

1 i—1
Z ary + Z byt = Z(al + b)Y (1.8)
1=0 1=0 1=0

i— i—1

1 i—1
Zal’yl . Zbl/’yl = Z( Z albl/)ys. (19)
I'=0

=0 s=0 [+l'=s

We note that if it =1 then Ry =TF and if i = e then R, = R.
Lemma 1.2.8. ([30, [31))
1. The ring R; is a chain ring with the maximal ideal (7y) for all i < co.
2. The multiplicative group R%, = {3 72 a;9’|ag # 0}.
3. The ring Ry 15 a principal ideal domain.
We note that the ring R, is an infinite ring whereas each R; is a finite ring.

Lemma 1.2.9. ([30, [31]) It is well-known that the generator matriz for a code C over a
finite chain ring R;, where 1 < oo s permutation equivalent to a matriz of the following
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form:

Iy Aop Aog Ao s Ape
v, ’YA1,2 ’YA1,3 ’YAl,e

Vo Az V2 Age
. . , (1.10)

,.ye—l[ke_1 ’76_114671,6
where e s the nilpotency index of . This matriz G is called the standard generator matrix

of the code C. In this case, the code C is said to have type
O I Gy L (1.11)
For linear codes over R, the situation is a little different.

Lemma 1.2.10. ([30, [31]) Let C be a finitely generated, nonzero linear code over R, of
length n, then any generator matrix of C is permutation equivalent to a matriz of the following

form:

Y™ lk, Y™ Ao Y™ Ao Y0 Ao Y™ Ao,

Yy, ™M AL Y A Y Ay

Y2, Y™ Az V"2 Ag
G = ) . . (1.12)

Y g, YT Ay

where 0 < mg < my < -+ < my_1 for some integer r. The column blocks have sizes
ko, ki, ..., k. and k; are nonnegative integers adding to n. A code C with generator matriz

of the form given in Equation 1s said to be of type

v

mo)ko( m1>k1 ) m'rfl)k'rfl’

(v -y
where k = ko + k1 + -+ - + k,_1 s called its rank and k, = n — k.

Definition 36. ([30,[31]) A code C of length n with rank k over R, is called a y-adic [n, k]
code. We call k the dimension of C and denote the dimension by dim C = k.

Definition 37. ([30,(31)]) Let i,j be two integers with i < j, we define a map

Ul R; — R;, (1.13)
7j—1 i—1
Z ay — Z . (1.14)
=0 =0
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If we replace R; with R, then we obtain a map V°. For convenience, we denote it by
W,. Since both, \IJZ and U; are projection maps, it is easy to show that V] and V; are ring
homomorphisms. Let a,b be two arbitrary elements in R;. It is easy to get that

U (a+b) = W (a) + W) (b), W (ab) = W (a)W!(b). (1.15)
If a,b € Ry, we have that
Ui(a+b) = T(a) + T;(b), U;(ab) = T;(a)T;(b). (1.16)

Note that the map \I/f and W; can be extended naturally from R} to R} and Ry, to R}

1.3 Weight Enumerators of Binary Self-Dual Codes

In some of the later chapters in this work, we construct many Type I, extremal binary self-
dual codes of lengths 64 and 68 of which some have parameters in their weight enumerators
that have not been known in the literature before. We focus on this particular length, since
there are still many Type I unknown codes of this length. Recently, much work has been
done to find new, extremal, Type I binary self-dual codes of length 68, see [14] 19, 20, 22, 36]
for some examples. In this work, we construct new binary self-dual codes of length 68 with
very rare parameters that were not found before. We recall the weight enumerators of these
codes.

1.3.1 Type I Binary [64, 32, 12] Self-Dual Codes
There are two possible forms for the weight enumerator of binary [64, 32, 12] self-dual codes
([a):

Wear = 1+ (1312 + 168)y"* + (22016 — 648)y™ + ..., 14 < § < 284,

Weao = 14+ (1312 + 168)y™ + (23040 — 648)y™ + ..., 0 < B < 277,

where [ is an integer.
Examples of many codes constructed for both weight enumerators with different values
of the parameter 3 can be found in [30], 54 [65].

1.3.2 Type I Binary [68, 34, 12] Self-Dual Codes

There are two possible forms for the weight enumerator of binary [68, 34, 12] self-dual codes
([, 477):

Wesa = 1+ (442 4 48)y™ + (10864 — 86)y™ +...,104 < 3 < 1358,
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Weso = 1+ (442 + 48)y™ + (14960 — 83 — 2567)y** + .. .,
where # and v are integers with 0 < v < 9.

Examples of many codes constructed for both weight enumerators with different values
of the parameters  and v can be found in [14], [19] 22| 36, [37, [66, 67]. In [67], the authors
constructed the first examples of codes with v = 7 in Wgg». In [37], the authors constructed
the first examples of codes with 7 = 8,9 in Wig .

In Chapters [2| and [5] we construct many codes with different values of the parameter (3
for v =1,2,3,5,6,7,8,9 that were not known in the literature before.

1.4 Special Matrices, Group Rings, the Map o(v) and
Group Codes

In later chapters of this work, we present generator matrices in which we employ a well-
known map that sends an element from a group ring to some n x n matrix with coefficients
from the ring R. We also study codes, group codes in particular, over finite commutative
Frobenius rings generated by this map. Moreover, in Chapter [4] we extend this well-known
map. For that reason, we now recall the definitions on group rings, the well-known map that
sends an element from a group ring to an n X n matrix over the ring R and the definition of

group codes.

1.4.1 Special Matrices

In order to understand the map that sends an element from a group ring to an n x n matrix
over the ring R and to understand some of the constructions we present later in this work,

we now recall the definitions of some special matrices.

Definition 38. ([1]) The n x n identity matriz, denoted I, is the diagonal matriz with
Qi; = 1.

Definition 39. ([50]) A circulant matriz is one where each row is shifted one element to the
right relative to the preceding row. We label the circulant matriz as A = circ(ay, ag, as, ..., ay)
where a; are ring elements.

Definition 40. ([53/) A block-circulant matriz is one where each row consists of blocks
which are square matrices. The rows of the block matriz are defined by shifting one block to
the right relative to the preceding row. We label the block-circulant matriz as CIRC(Ay, As,

.., Ay), where A; are the k x k matrices over the ring R.

Definition 41. ([50]) A reverse circulant matriz is one where each row is shifted one
element to the left relative to the preceding row. We label the reverse circulant matriz as

A = revcirc(ay, ag, s, . . ., ap,) where a; are ring elements.
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Definition 42. ([1]) The transpose of a matriz A, denoted by AT, is a matriz whose rows
are the columns of A, i.e., (A;)T = Aj;.

Definition 43. ([1]) A symmetric matriz is a square matrixz that is equal to its transpose.

Definition 44. ([63]) Annxn matriz A = (a;;) is called a bisymmetric matriz if a;; = a;;

and a;j = Gpy1—jn+1—; where (1,7 =1,2,...,n).

Definition 45. ([48]) The determinant of a square matriz A is a function, det(A) : A — R
such that the square matriz A is non-singular if and only if det(A) # 0. If det(A) = 0
then we say that A is singular.

Definition 46. ([11]) A Latin square is an nxn matriz containing of n different elements,

each occurring exactly once in each row and exactly once in each column.

1.4.2 Group Rings

In this section, we give the standard definition of a group ring.

Definition 47. ([61)]) Let R be a ring and let G be a group, then the group ring RG of G

over R 1is given as:
RG = {Zagg | a, GR}.

geG

We define the sum of two elements in RG componentwise:

Z agg + Z beg = Z(ag +bg)g-

geG geG geG

Additionally, given two elements o = deG agg and B =3, . buh, we define their product
as

aff = Z agbpgh.

g,heG

Definition 48. ([61]) The canonical involution x : RG — RG on a group ring RG is
gien by
vt = Ezagg_1 forv= Zagg € RG.

geG geG

If v satisfies vv* = 1, then we say that v is a unitary unit in RG.
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1.4.3 An Established Isomorphism

Here, we recall the map that sends a group ring element to an n X n matrix over R, described
in [51]. We also recall some properties of this map.

Definition 49. ([51]) Let {g1, 92,93, --,9n} be a fized listing of the elements of the group
G. Then the matriz of G (relative to this listing) is defined as:

g'a 9l ' o 91'gn
-1 -1 -1 -1

M(G): 92'91 92'92 92'93 gzlgn (1'17)
9. 0 979 97'9s o 9n'w

Next we define the matrix that corresponds to a group ring element.

Definition 50. ([51]) Let G = {g1,92,.-.,9n} be a group of order n. Let R be a ring. Let
V=g 01+ Qg g2+ -+ g, g, € RG. Define the matriz o(v) € M,(R) to be

Yrtor Yorlee Ygrles Yo tgn
o1 o1 o1 ... (1
0_(,0) — 92' g1 92' 92 92' 93 ' 92‘ gn ) (118)
Oégglg1 ag;192 Oég,jlgg e agﬁlgn
The elements g;*, g5 2, . .. , gt are simply the elements of the group G in some order. The

matriz o(v) is in M,(R).

Theorem 10. ([51]) Let v € RG, then the map o : v — M,(R) is a ring isomorphism from
RG to a subring of M,,(R).

Theorem 11. ([51)]) Suppose R has an identity. Then v € RG is a unit in RG if and only
if o(v) is a unit in M, (R).

Corollary 1.4.1. ([51]) When R is commutative, v is a unit in RG if and only if o(v) is a
unit in M, (R) if and only if det(o(v)) is a unit in R.

Corollary 1.4.2. ([51]) The element v is a zero-divisor in RG if and only if o(v) is a

zero-divisor in M, (R).

In [39], the authors showed that there is a connection between v* and v when we take

their images under the ¢ map:
o(v*) =o(v)’. (1.19)

An interesting and the most important property of the matrix o(v) is that it takes
different form for different groups G. For example, for the cyclic group of order n, the
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matrix o(v) is a circulant matrix of order n, for the dihedral group D,,, the matrix o(v)

takes one of the following forms (these forms depend on how we list the elements of the

o(v) = (g ﬁ) ,

where A is a circulant matrix and B is a reverse circulant matrix, both with entries from

A B
7(0) = (BT AT) ,

where both matrices, A and B are circulant with the entries from the ring R. Of course,

group Dayy,):

the ring R, or

there are many different groups of different orders that one can consider to obtain interesting

n X n matrices over the ring R under the map o.

1.4.4 Group Codes

In this section, we give the definition and some results on group codes generated by the
group ring elements. This family of codes was described and studied over finite commutative
Frobenius rings in [23].

Definition 51. ([23]) Let R be a finite commutative Frobenius ring. For a given element
v € RG, a group code or a G-code, over the ring R is defined as:

C(v) = (a(v)), (1.20)

where o(v) is the matriz defined in Section . Namely, the code is formed by taking the
row space of o(v) over the ring R. Moreover, the code C(v) is a linear code since it is the

row space of a generator matric.

It is not possible to determine the size of the code (or the dimension if R is a field)
immediately from the matrix, i.e., the rows of the matrix o(v) are not necessarily linearly
independent.

We now recall some important results on G-codes over finite commutative Frobenius

rings.

Theorem 12. ([23]) Let R be a finite commutative Frobenius ring and G a finite group of
order n. Let v € RG and let C(v) be the corresponding code in R"™. Let I(v) be the set of
elements of RG such that > a;g; € 1(v) if and only if (aq, aq, ..., ) € C(v). Then I(v) is
a left ideal in RG.

Corollary 1.4.3. ([23]) Let R be a finite commutative Frobenius ring and G a finite group
of order n. Let v € RG and let C(v) be the corresponding code in R™. Then the automorphism
group of C(v) has a subgroup isomorphic to G.
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Chapter 2

Self-Dual Codes using Bisymmetric
Matrices and Group Rings

A very well known and probably the most common technique for producing self-dual codes
over rings is to consider standard generator matrices of the form (I,, | A), where A is some
n X n matrix over the ring R, fully defined by the elements appearing in the first row, for
example, a circulant or reverse-circulant matrix. Please see [41} 42] 43| 44, [55] for some
examples. Such generator matrices have to satisfy one condition, namely, AAT = —1I,,.

One of the main reasons why A is a matrix fully defined by the first row is that it
reduces the search field significantly. For instance, if we were to consider a square matrix
with n? independent variables, then if we searched for self-dual codes over the finite field Fy
the search field would be 2"° which is very impractical. For square matrices that are fully
defined by the elements appearing in the first row the search field reduces to 2" when we
search for self-dual codes over the field IF,.

Recently in [39], the authors considered generator matrices of the form (I,, | o(v)), where
o(v) is the matrix defined in Equation . The advantage of this generator matrix is
that one can obtain many different n x n matrices, fully defined by the first row, over the
ring R. The number of these matrices depends on the number of groups of a particular order
n. This technique allows to find codes with parameters that could not be obtained from the
standard generator matrices.

In this chapter, we consider a generator matrix in which the identity matrix is replaced
with a block matrix, where the blocks are fully defined by the elements appearing in the
first row, and the matrix A is replaced with the 4 x 4 bisymmetric block matrix, where each
block is a matrix of the form o(v). The 4 x 4 bisymmetric block matrix allows us to have
a block matrix which does not have to be fully defined by the blocks appearing in the first
TOW.

We present the construction and show under what conditions it produces self-dual codes
over a finite commutative Frobenius ring of characteristic 2. We also employ our generator
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matrix together with the well-known extension and neighbour techniques to obtain new
extremal binary self-dual codes of length 68. This chapter is joint work and the results are
published in [35].

2.1 The Construction

In this section, we present the main construction of this chapter. As mentioned previously,
we combine together the idea of a bisymmetric matrix and matrices that come from group
rings.
Let v; € RG, where 1 < i < 6, R be a finite commutative Frobenius ring of characteristic
2 and G be a finite group of order n. Additionally, let By = circ(ay, ag,...,as) and By =
—_——

n—1
circ(as, .. .,a3) where a; € R. Define the following matrix:
—_——
By B I o(vy) o(vy) o(vs) o(vy)
2n

| BB o) ales) o) o) o)

7 I By By | o(vs) o(vg) o(vs) o(vs)

2n
By By |o(vy) o(vs) o(v) o(vy)

Let C, be the code that is generated by the matrix M,. Then, the code C, has length
8n.

As mentioned earlier, the standard generator matrix of a self-dual code is of the form
(I, | A), where I,, is the n x n identity matrix. In the above construction, we replaced the
identity matrix with a block matrix dependant on three variables. The reason for doing
this, is that we want to increase our chances of constructing binary self-dual codes with
parameters that could not be obtained from the standard generator matrix. By increasing
the search field (by having more independent variables) we can consider more possibilities
for different entries in the above construction - this may lead to finding new self-dual codes.

We now give the main theorem of this chapter.

Theorem 2.1.1. Let R be a finite commutative Frobenius ring of characteristic 2 and let G
be a finite group of order n. Then C, is a self-dual code of length 8n if and only if

1. 14+ a} =0,

2. na3 +na3 =0,

3. U] + vav; + v3vy + vavy = 0,
4. 0105 + VUf + v3vg + vav3 = 0,

5. v1v3 + vaug + V3vs + Vv = O,
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6. v1v] + VU3 + V3v5 + vav] = 0,
7. vavs + VsV + vevUg + vzvz = 0,

8. VU3 + Vsvg + VUE + v3v; = 0

and
rank 0'(117) U(US) O'(’Ug) 0'(’1)10) _ 272,,
O'(’UH) O'(’Uu) O'(Ulg) O'(U14)
where
Uy = U3 —+ a1V -+ IU(O[QUl + 0[32)2), vg = Ve —+ 1V + w(ozgvg + OZg’U5)7
Vg = Vs + QU3 + ”LU(CYQ’Ug + OK3U6), Viop = U2 + Q1Vg + "LU(O(QU4 + OégUg),
Vi1 = V4 + Q10 + w(a3v1 + 042?)2), Vg = VU3 + QU5 + U)(Oégvg + 042?]5),
Vi3 = V2 —+ a1Vg -+ U)(Oég?)g -+ CYQU@), Vg = U1 + Q13 -+ ’IU(OJ3U4 -+ &2’03)

andw:ZgE RG.

geG

Proof. Let M, = (M1 M2> where

B, By, I, O o(vy) o(vy) o(vs) o(vy)
| B B 0 I, o _ o(ve) o(vs) o(vg) o(vs)
M=\l o B | ™M o(vs) o(ve) o(vs) olvs) |’

0 I, By B o(vy) o(v3) o(ve) o(vy)

By = aq I, +o(w), By = o(asw) and w = Zg € RG. Clearly, M, M = My M| + M, M.
geG
It is well known that w is contained in the center of the group ring RG. Clearly for any

square matrices A and B of the same size over the ring R, (A + B)? = A? + B? if and only
if AB = BA. We now have
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arl, + o(aw) o(asw) I, 0
M MT o(azw) a1, + o(aw) 0 I,
I, 0 ar I, + o(axw) o(azw)
0 I, o(azw) ay I, + o(aw)
o(aqw) o(azw) I, 0 ’
S DN o(asw) o(aw) 0 I,
I, 0 o(aw) o(azw)
0 I, o(azw) o(aw)
o(aww) o(asw) I, 0 ’
020, 4 o(azw) o(aw) 0 I,
I, 0 o(aw) o(azw)
0 I, o(azw) o(aw
since Iy, commutes with any 4n x 4n-matrix. Moreover
o(aqw) o(azw) 0 0 ’
MyMT = 0214 + Loy + o(azw) o(aw) 0 0
0 o(aw) o(azw)
0 0 o(azw) o(aw

since (0 2 )2 = Iy, and () ") commutes with any 4n x 4n-matrix of the form (% §).

Clearly o(w)? = no(w). So

o(n(ad +ad)w)  o(2nasazw)

o(n(a + a%)w)) ’0>

M M] = (1+ a3)Iy, + CIRC << (
= (14 a}) Iy, + CIRC(a(n(a3 + a3)w),0,0,0).

o(2nasazw)

Additionally,
o(vi) o(v2) o(vs) o(ve)\ (o) o(vz) o(vi) o(v))
r_ | o(v) o(vs) olvs) o(vs) | | o(v) olvs) o(vg) o(v3)
M2M2 — * * * *
o(vs) o(vs) o(vs) o(va) | | o(v3) o(vg) o(vs) o(v3)
o(ve) o(vs) o(v2) o(v1)) \o(vi) o(vi) o(v3) o(v])
o (v1v] +v2vl +v3vi +vavy) o(vivl+vavitvzvd+vavs) o(vivi+vavd+vszvi+vavl) o(vivi+vevi+vsvs+vav])
o o (v2v] +vsvl +vevi +v3vy) o(v2vd+usvituevd+vavy) o(vavi+usvd+vevi+vsvl) o(vavi+vsvs+vevs+vzv])
- o (v3v} +vev3 +vsv5+v2v]) 0(v3vd+vevitusvd+v2v]) o(v3vi+vevd+usvi+v2vl) o(v3v)+vevs+vsvs+v2v]) :
0 (v4v] +v3v3+v2vi+v1v}) o(vavsH+v3vE+vavi+v1v]) o(vavs+usvi+v2vitv1vs) o(vav) +v3vi+vavs+viv])

Clearly, C, is self-orthogonal if and only if 1 + a2 = 0, na2 + na3 = 0, v} + vav} +

V35 + Vg = 0, V103 + VUF + v3vg + vav; = 0, vV1v; + Vg + V3UE + vavy = 0, vivy +
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VU5 + U305 4+ vav] = 0, vav5 + VsUE 4 vevg + vzvs = 0, v9v3 + vsvg + vev; + v3v; = O,
VaUy + VsU5 + VU5 + v3v] = 0 and wvzvy + vevs + v5v5 + vav] = 0. We note here that the
last two conditions are the result of the fifth and fourth conditions respectively. Namely,

V105 + VUG + v3vs +vgvy; = 0 =

VoV + UsU; + veUs + vgv; = 0, that is 0 = 0* =

(V105 + Vouf + V3VE + VU3)* = v3u] + veUs + VsUE + veUf = VUl + vsUE + vevs + vzv] and

similarly v1v5 + vavi + v3vg + vv5 = 0 = v3v) + VU5 + v5v5 + vev] = 0, that is
0 = 0" = (v1v3 + V203 + V30§ 4+ v405)* = VoUT + V5V5 + VU5 + VsU) = V3V) + VU5 + Us U5 + V0]
Now,
B? + B2+ 1, = (ay], + o(auw))? + (o(asw))? +

= o1l + o ((e2w)?) + o((asw)?) +

= ail, + o(asw? + adw?) + 1,

= ail, + o(as(nw) + a3 (nw)) + I,

=ail, +a((na2+na3) )+ 1

= (WL + o((0)w) +

=21, +0(0)

= 0.
Consequently,

I, 0 0 0 B, By I, 0 I, 0 0 0
MOInOO_BgBl()]nOInOO
"“IBi B I, o |1 0 B B||B By I, 0

By, By 0 I, 0 I, By B By, By 0 I,

2B, 2By I, O
| BE+ B2+, 2B, B, B, B,
2B, B, B2+ B?+1, By B;
00 I, O
loo o 1,
|00 B B
0 0 By, B
and
I, 0 o(vy) o(ve) o(vs) o(vy)
rank M, = rank 0 I, o(va) o(vs) o(vg) o(vs)
By By o(vs) o(vg) o(vs) o(vg)
By By o(vy) o(vs) o(vy) o(vy)
W)

26



the identity element of the group G. Additionally,

o(e) 0 o(v1) o(vy) o(vs) o(vyg)
rank M, — rank 0 o(e) o(ve) o(vs) o(vg) o(vs) _
o(aje + aw) o(azw) o(vs) o(vg) o(vs) o(vs)
o(azw) olane + asw) o(vy) o(vs) o(vy) o(vq)
I, 0 0 0
0 1, 0 0
rank X
o(aje + asw) o(azw) I, 0
o(azw) o(are +asw) 0 I,
o(e) 0 o(v1) o(vy) o(vs) o(vg)
0 o(e) o(ve) o(vs) o(vg) o(vs3) _
o(are + aw) o(azw) o(vs) o(vg) o(vs) o(v)
o(azw) o(are + agw) o(vy) o(vs) o(ve) o(vr)
ole) 0 o) o(va) o(vs) o(vy
rank 0 o(e) o(vy) o(vs) o(vs) o(vs 7
0 0 o(vr) o(vs) o(vg) o(vi)
0 0 o) o(viz) o(vg) o(via)
where
U7y = Us+ U1 + U)(OézUl + 043?)2), Vg = Vg + QU9 + w(OZQUQ + 063’05),
Vg = Uy + QU3 + UJ(O&QUg + OZ3U6), V1ig = V2 =+ Q1Uy + w(a2v4 + Oég?]g),
U1l = Vg + aqve + w(asvy + aovs), vz = vz + a1v + w(asvs + asvs),
Vi3 = V2 + Vg + ”LU(Oég’Ug + Oégvg), Vg = U1 + QU3 + "LU(O(3U4 + 042"03).
Hence,

rankM, = 2n + rank (U(W) o(vs)  o(vo) U(Um)) )

o(vy1) o(vie) o(viz) o(via)

Finally, the self-orthogonal code C, is self-dual if and only if

rank<a(v7) o(vg) o(vg) 0(1}10)):2”

U(Ull) 0(012) 0(013) 0(1114)

If we assume that the group G is Abelian, we get the following result.

Corollary 2.1.2. Let R be a finite commutative Frobenius ring of characteristic 2 and let
G be an Abelian finite group of order n. Then C, is a self-dual code of length 8n if and only

if
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1. 1+af =0,

2. na3 +naj =0,

3. vi+vs+vi4+0i=0,

4. VU3 + VU4 + v3V5 + vovg = 0,
5. (va +v3)(v1 4+ v4 +v5 +v5) = 0,
6. (v1 +vg+v5 +v6)? = 0.

Proof. From Theorem [2.1.1) we have the first two conditions. Since G is Abelian then v* = v
for any v € RG. The equations (3) — (8) in Theorem are equivalent to

2 2 2 2
v] + vy +v3 +vy =0,

V1V + UaVs + V3Vg + VU3Vy = 0,
V1U3 + Vo4 + Vovg + v3U5 = 0,
V1V4 + V104 + Vv + vovg = 0,
v +v: 4+ vz + 3 =0,
UgUs + UaV3 + UsUg + Uslg = O,

or

vf+v§+v§+vi =0,
V1V + VU5 + U3V + V304 = 0,
V1V3 + VaUyq + VaVg + UsUs = O,
0=0,
vs + vZ 4+ vg +v35 =0,
0=0.

Adding the 5th equation to the 1st one, the 2nd equation to the third one, we obtain the
required equations:

v? +v3 + 3 +v] =0,
V1Vg + VU5 + V3Vg + VU3Vy = O,
(vg + v3)(v1 + v4 + v5 + v6) = 0,

2 2 2 2
Ul +U4+U5+U6:O.
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We can clearly see that the search field is greater in our construction than in the standard
generator matrix of the form (1,|A), where I, is the identity matrix and A is a matrix that
is fully defined by the elements in the first row. Also, o(v;) represent matrices that come
from group rings - this means that we can create many different M, matrices by considering
different groups in the group rings. We next apply the above matrix to search for extremal
self-dual codes.

2.2 Numerical Results

In this section, we apply the matrix defined in Equation to the ring F, 4+ ulF, to obtain
self-dual codes whose binary images have parameters [64,32, 12]. We specifically consider
the matrix M, for the group G = (5, that is, the cyclic group of order 2. Next, we extend
these codes to obtain new self-dual codes of length 68. We finally consider their possible
neighbours and find more new self-dual codes of length 68. We implement the search of
self-dual codes over the alphabets using the software MAGMA ([4]).

2.2.1 Single-Even, Binary [64,32,12] Self-Dual Codes

We now employ the matrix M, with G = C5 over Fy + ulF4. As a result, we obtain many
codes whose binary images are the extremal codes of length 64. To save space, we only list
two. These codes in turn are used to find new codes of length 68. Recall that the above
construction involves v; € RCy fori € {1,...,6}. Instead of listing each v; separately, we list
(v1,...,v6) as one vector. We also list the parameters of the corresponding binary images.

Table 2.1: Codes of length 64 via Theorem [2.1.1] over the ring F; + ulF,

Ci (Q’[ , Qg 0{3) (U], ey UG) ‘Aut(czﬂ VV642 Cz (CY] , (g, ag) (U], ey Ub') \Aut(Cz)\ VV64,2

1 (0,4,2) (A,1,0,0,4,4,1,7,4,1,7,1) 2 B=0 2 (0,E,2) (A3,01,4,7,53,4,3,4,4) 2.3 B=64

2.2.2 New Extremal Self-Dual Binary Codes of Length 68 from
Fy 4+ ulFy; Extensions

In this section, we apply Theorem [J to the g, ;.r,-images of the codes in Table 2.1 The
results are tabulated in Table [2.2] where 1 + v in Fy + ulFy is denoted as 3.
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Table 2.2: New codes of length 68 from Theorem [J)

Cesi Ci ¢ X vy B Cesi: Ci c X v B

Cesn 2 1 (133u330310100uu130u0313311110u03) 1 173 | Cgsp 2 1 (331031ul101uuu01100033311133uuul) 1 177
Cess 2 1 (313u31031u1000w1100u33311131w001) 1 181 || Cesa 2 1 (1010u113u3u301luluduuulldudlduulul) 2 167
Cess 2 1 (11u033013u3uu0u0u0003110013133u0) 2 175 | Ces¢ 2 3 (00u11333330uu00uu30130100300u311) 2 177
Cosy 2 3 (331u33uulOu000ul303uu03u0033ulud) 2 179 | Ces 2 1 (013u33luluuluududuu33u033101333u) 2 181
Coso 2 3 (0003uu3ulu03013u30000301331111u0) 2 183 | Cesio 2 1 (wOu3u03u3uul01101010010131111100) 2 187
Cosa1 2 1 (31ullul33wl0013011u01103u033ull0) 2 191 | Cgsiz 2 1 (Ouwluwwlu3003011w10w0u301113331u0) 2 197
Cesiz 1 3 (1u33u331u33330u10u130310ul30uluu) 3 74 | Ces1a 2 1 (ww01003u01003u30113131uuuu00330u) 3 157
Ces,is 2 3 (11130u0u11013333u0u3dluudl33uvuuu) 3 181 || Cesie 2 3 (33ullull303uwu3101101310100110110) 3 183
Cosar 2 1 (u31u31300001wu303003100311033310) 3 185 | Cgsis 2 1 (13330ul3uw311011131ul113u3u3u300u3) 3 187
Cespo 2 1 (01301130uwu030u1010u31u033103331u) 3 195 | Cgsa0 2 1 (031u3330uwu01001010u3300131011330) 3 197
Ces21 2 1 (131100110111u311130313u3ul030uuld) 3 199 | Cgsoe 2 1 (1131001101330331110311w301010003) 3 201
Cesos 2 1 (u310313uuwuul003ul0u31u0111011130) 3 203 || Cesoq 2 1 (w1303310u003uulu30ul3uulldlud3llu) 3 217
Cesos 2 1 (u3lullluwu010ululOul30ul1301111u) 5 205 || Cesos 2 1 (011ull3uu0u3001ul0u3300333ul3llu) 5 213

2.2.3 New Codes of length 68 from Neighbours

In this section, we employ Definition [32| to investigate the possible neighbours of the codes

in Table 2.2l As a result, we obtain 15 more new binary self-dual codes with parameters

(64,32, 12] as neighbours of the codes Cy5 and Cig. It turns out the neighbours have trivial

automorphism. We set the first 34 entries of x to be 0, the rest of the vectors are listed in

Table 2.3l
Table 2.3: New codes of length 68 as neighbours

Nosar  Cegae (0101111000110001011111010111110111) 5 183 || Nogos  Cesos  (0101110001000111011110011010101100) 5 184
Nes2o Cosos  (0110100011110111100100000100100000) 5 185 || Ngsso Ces2s  (1010011011100010001000100110011101) 5 186
Nesz1 Cesas  (0000010000111110000110011000101101) 5 188 || Ngsz2 Ces2s  (1101101010010110101001001001000110) 5 190
Nesas Ceszs  (0101111110111000000110101000101101) 5 192 || Megaa Cesze  (1111111111101001001001100111000001) 5 194
Nosszs Cesee (1111001001100001110100111100000111) 5 196 || Nogss Cesas  (1000011011000101011111111110000010) 5 197
Nissr Ces2s  (0011101000101101011101110001011001) 5 199 || Ngsss Cesas  (1101001011110010100010010010010011) 5 203
Ngsgo Cospe  (1010110101000110100110101111100001) 5 204 | Mssao Ceszs  (0010001101000001010100010101011011) 6 192
Nesar Cesae  (1010011000111100101001111000001100) 6 210

The codes constructed in this chapter and the ones constructed in later chapters, could

potentially be used in design theory to produce some new t-designs. It is well know that

some of the binary self-dual codes have been used before to produce particular t-designs by

the Assmus-Mattson Theorem from [2]. For example, the binary self-dual [24, 12, 8] extended

Golay code hold 5-designs. Please see [2] for details on the Assmus-Mattson Theorem and

its connections to binary self-dual codes with interesting examples, like the one about the
binary self-dual [24, 12, 8] extended Golay code.
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Chapter 3

(G-Codes, Self-Dual G-Codes and
Reversible G-Codes over the Ring B, ;.

In this chapter, we study a new family of rings, B;, whose base field is the finite field I,
We study the structure of this family of rings and show that each member of the family is
a commutative Frobenius ring. We define a Gray map for the new family of rings, study
G-codes, self-dual G-codes, and reversible G-codes over this family. In particular, we show
that the projection of a G-code over B;, to a code over B;,, is also a G-code and the image
under the Gray map of a self-dual G-code is also a self-dual G-code when the characteristic
of the base field is 2. Moreover, we show that the image of a reversible G-code under the
Gray map is also a reversible G?""_code. The Gray images of these codes are shown to have
a rich automorphism group which arises from the algebraic structure of the rings and the
groups. Finally, we show that quasi-G codes, which are the images of G-codes under the
Gray map, are also GG*-codes for some s.

One desirable property of codes over this new family of rings is that one can obtain
codes with a rich automorphism group via the algebraic structure of the ring through the
Gray map. In this construction, one can find codes that might have been missed by more
classical construction techniques, for example, one may find extremal binary self-dual codes
with new weight enumerators or with different orders of the automorphism group. The new
family of commutative Frobenius rings B;, introduced in this chapter, is an extension of
the family of commutative Frobenius rings F;, given in [9]. In there, the authors consider
a finite field of order 4 as a base field, that is, the finite field F,. In this chapter, our base
field is a finite field IF,» of order p”. There is an extensive literature on different families of
codes over rings, please see [13| 24] 25| 32] for some examples.
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3.1 The ring B;;
We begin by describing the family of rings B; ;. Set

Bji =Fprlvr,va,...,05,u1,us, . .. ,uk]/<vz2 — U,-,u2>.

i

The above family of rings generalises the definition of F;; in [9] as well as the rings
Ry = Foluy, ug, . .., ux]/{(u? = 0) from Definition , the rings Ay, = Falvy,va, ..., 03]/ (v} =
v;) in [8] and the rings Fyr[v1, va, . . ., vg] /(07 — v;, v;v; — vjv;) given in [52].

In essence, all of the families of rings were studied together with Gray maps to ambient
spaces over finite fields. They use the algebraic structure of the family of rings to obtain
desirable properties for the codes over finite fields. One desirable property is that one can
obtain codes with a rich automorphism group via the algebraic structure of the ring through
the Gray map.

We now look at the algebraic structure of the ring B .

For AC [j]={1,2,3,...,5} and B C [k] ={1,2,3,...,k}, we denote

Vg = HU" and wup := Hui,
1€A i€B

with up = 1 and vy = 1. Every element in the ring can be written as

Z CA,BUAUR, (3.1)

A C [4]
B C [K]

where cq g € Fpr.
It is immediate that

VR if ANA #0, (3.2)
ATATT uUAuA Zf AﬂA/:@. ‘
Similarly, we have
VAVAr = VAUA’- (33)

By using Equation (3.2) and Equation (3.3]), multiplication of two elements in B is

given by:
ZCA,BUAUB Z carpvAaup | = Z (ca,Bear, B )vaLAUBUB (3.4)
B ALB A,B,A' B
BNB =10

where A, A" are subsets of [j] and B, B" are subsets of [k].

Lemma 3.1.1. The commutative ring B; . has characteristic p, and |B; x| = (p")? .
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Proof. The commutativity of the ring follows from the fact that [F,- is commutative and
that the variables commute. Since the characteristic of IF,» is p, then B, ;, has characteristic
p. When we look at the representation of elements of B; given in Equation , we see
that there are 272F = 27*F gubsets and p” choices for each coefficient ca,p. This gives that
B, has cardinality (p")% ™. O

We now give some structural theorems about the family of rings.

Theorem 13. Let j and k be non-negative integers.
1. The ring B;, is isomorphic to @,2;50,1@-

2. An element a is a unit in Bjy if and only if the projection to each component of

EB?;BM 18 a unit.

Proof. The ideals (v;) and (1 + v;) are relatively prime ideals. By Lemma 2.3 in [12], we
have that B;, = B;_1; X Bj_1,. Then, by induction on j, we have the first result.
The second result follows immediately from the isomorphisms in the first. ]

Since Bj, is isomorphic to ®% By, it is natural to look at the structure of the ring
Box = Fprlug, ug, ..., ug]/(u?) to understand the structure of B .

Lemma 3.1.2. Let ZAg[k] caua € By, with c¢g =0, then

(Z CAUA)p = O

AC[K]
where p is the characteristic of By .

Proof. First, we note that if A # ), then u% = 0. Then, we see that the coefficient of any
monomial in this expansion, other than the first or the last is divisible by p and hence 0.
Therefore, all of the terms are 0. ]

Lemma 3.1.3. An element a of the ring By is a unit if and only if cy # 0.

Proof. We write an element in By as ¢p + Y Acli €ata by hypothesis, with ¢y = (. Since
the ring has characteristic p and by Lemma , the inverse of ¢y + > Ac[k] CAUA IS

p—1
—1 ) )
(p i )(C(Dl)erl( Z catn)'.
i=0 ACIK]

The term ¢ ! exists if and only if ¢y # 0. O]

Theorem 14. An element a of the ring By, is a zero-divisor if and only if cp = 0. The set
of all non-units form a maximal ideal and the cardinality of this maximal ideal is (]9’")2“]L

and therefore the ring By is local.
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Proof. For the first statement, we know by Lemma that

(Z CAUA)( Z cAuA)pfl =0,

ACTK] ACIK]

when ¢y = 0. Therefore it is a zero-divisor. Lemma [3.1.3| gives the other direction.
Next, let m = (uq, ug, ..., u). Elements of this ideal are all of the form, C@+2Ac[k} CAUA
where ¢y = 0. This is necessarily all non-units and is therefore the unique maximal ideal. [

Theorem 15. The ring B;, is not local for non-zero j.

Proof. Thering B, , is isomorphic to @?ilBM by Theorem . Then each ideal corresponding
to the sum of (k — 1) zero-ideals with one copy of By is a maximal ideal. Therefore, the
ring is not local. O

As an example of this, consider the ring By o = Fp[v1]/(vf — v1). The ring is isomorphic

via Theorem [13|to IF, X F,,. This ring has two maximal ideals corresponding to F, x {0} and
to {0} x F,. Therefore, the ring is not local.

Given the definition of inner-product and the fact that the ring is commutative it is easy
to see that for any ideal I, Ann(I) = I'+. We use this result in the following theorem.

Theorem 16. Let Iy = (uj Uiy -~ ui,) and In = (u;y, Uiy, .., w;,) be ideals of By, where
i¢ # iy, when £ £ . Then |I}| = (pr)2"" and |L| = (p")¥ 2.

Proof. Elements of I; are in the form of

Z CAUA, Cp € Fpr,
ACIK]

where up = 1. It is clear that every u, must have {iy,is,...,i,} C A. Then there are 28~
such subsets of [k]. Hence |I;| = (p")¥ .

For the second statement, elements of I are in the same form. But this time, the subsets
of [k] differ. More precisely, subsets must have at least one of {i1,1s,...,is}. It can be easily
obtained that there are 25 — 26~ such subsets. Hence |I,| = (p")* 2", O

Theorem 17. Let I} = (w;,w;, ... w;,) and Iy = (w;, Uy, ... u;,) be ideals of Byy. Then
IQJ' == [1.

Proof. We have I;- C I, by the fact that u;;ug = 0 where A = {iy,4,...,4,} and u;; €
A. Equality follows from Theorem [I6] by using the fact that By is a Frobenius ring and
examining the cardinalities. ]

Corollary 3.1.4. The ideal (u;) is a self dual code of length 1 for 1 <i < k.

Proof. Follows from Theorem [17] O
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3.1.1 Gray maps

Gray maps have been one of the most important aspects of codes over rings. In essence,
they are a map from the n fold product of the ring to an ambient space where the finite
field is the alphabet. This map emanates from the map that sends elements of the ring to
elements in the the s fold product of the finite field, where s is determined by the ring. This
map, in general, preserves weight and its intention is to create interesting codes over the
finite field from codes over the ring.

In this section, we define a Gray map © : B;; — Fii%. The map we give is a general-
ization of the map given in [9] as well as those given in [8], [24], [25], [26], and [27].

We can view B, as Bj,—1 + wB;r—1 and write each element of B;; as a + buy. Then
we can define the map ® : B;;, — B, as follows:

®(a + buy) = (b,a+ D). (3.5)

We can view B, i, as Bj_1 1 + v;B;_1 and write each element of B, as a + bv;. Then we
can define the following map W : B;;, — B7_, , as follows:

U(a+ bvj) = (a,a+b). (3.6)
We now define the map © : B;;, — FiiM as follows:
O(a) = W (®*(a)). (3.7)

Lemma 3.1.5. Let C be a linear code over Bjy, of length n. Then ©(C) is a linear code of
length n(27+F).

Proof. First, we shall show that the map ® is linear. We have that
O((a+ bug) + (' +bu)) = P((a+d)+ (b+b)u)
= (b+V,a+d +b+V)

= (bya+b)+ (V,d +¥)
= O(a+ bug) + (a’ + Vuy).

Then if ¢ € B; ;1 we have that

O(cla+bug)) = P(ca+ chbuy)
(¢b, ca + cb)
= c¢(b,a+b) = cP(a+ buy).

This gives that @ is linear.
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Now, we show that the map V¥ is also linear. We have

U((a+bvy) + (' +bvy)) = ¥((a+d)+ (b+V))
= (a+d,a+d +b+V)
= (a,a+0b)+ (a',a +V)
= U(a+bv;)+ Y(d +bvy).

If c € Bj_1, we have

U(c(a+bvj)) = Y(ca+ ch,)
= (ca,ca+ cb)
= c(a,a+b) = c¥(a+ by;).
This gives that ¥ is linear.

Then the map O is the composition of j + k linear maps and therefore the map © is a
linear map. [

Define the swap maps o1, 09, ...,0, that act on ]Fﬁi“ as follows:

O'k(Cl, CQ) = (CQ, Cl), Vcl, Co € F§i+k71,
e
Uk_1(01,C2,C3,C4) - (CQ,Cl,C4,C3), Vci S ]FIQ;JF ’

continuing to
27
01(C1,Ca, ..., Cojrk_1, Co+k) = (€2, €1, €4, C3, . . ., Cojk, Cojik_y), VC; € o

The next theorem shows that the map © gives some automorphisms in the image under

certain conditions.

Theorem 18. If the base field of B;j has characteristic 2 and C is a linear code over B;,

then ©(C) has k swap maps, 01,09, ...,0) in their automorphism group.

Proof. Given an element a+buy, multiplication by 14wy, gives (1+uy)(a+buy) = a+(a+0b)uy.
We see that ®(a + bug) = (b,a + b) and ®(a + (a + b)ug) = (a + b,2a + b). Therefore, if
the characteristic of the finite field is 2, then ®(a + (a 4+ b)ux) = (a + b,b). This gives that
for characteristic 2, multiplication by the unit 1 + u;, for each i induces an automorphism
of order 2 in the image that corresponds to a swap map. Finally, let o; denote the induced

by multiplication by 1 + u;. This gives the result. ]

We now generalize two results from [8] and [24] respectively, where it is shown that for
the maps defined in (3.5)) and (3.6]), the following two

®(CH) = (2(C)*
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and
() = (¥(C)"

hold when the base field of the ring is Fo. We now show that the two hold for the ring B,
only when the base field is For.

Lemma 3.1.6. Let C be a code over Bjy. Let @ : B — B2, | be defined as:
®(a + buy) = (b,a+ ),

and let W : By — B?_, ;. be defined as:
U(a+ bv;) = (a,a+b).

Then ®(Ct) = (®(C))* and Y(C*) = (V(C))* if and only if the characteristic of the ring
B]‘JC s 2.

Proof. We prove the result for ®. The proof for W is similar.
Let vi +wjuy, and vy + wauy, be two orthogonal vectors in Bjj, where v;, w; are vectors
in B}, ;. Then

(V1 + Wiy, Vo + Wauy| = [vi, Vo] + ([vi, Wa] + [va, wi])ug = 0.

Moreover, we have that [vy, ve] = 0 and [vy, Wa| + [va, W] = 0.
The images of the vectors have the following inner-product:

[D(v1 + Wiug), P(Va + Woug)] = [(W1, vi + W1), (Wa, Vo + W) =

= [v1, Vo] + [V1, Wa] + [Va, W1 + 2[W1, Wo] = 2[wy, Wa.

This will only be zero if the characteristic of the ring B; is 2, i.e., the base field is Fyr.
Assuming that the characteristic of the ring B; . is 2 gives that ®(C*+) C (®(C))*. Since ®
is a bijection we have ®(Ct) = (®(C))*. O

We now have the following result.

Theorem 19. Let C be a linear code over

Bji = For[v1,v2,...,0j,u1,us, ... Jug] /(0 — v, u?).

Then ©(Ct) = ©(C)*.
Proof. Follows from Lemma [3.1.6] m
Corollary 3.1.7. Let C be a self-dual code over

Bj,k = FZT[U17U27 e ,vj,ul,ug, e ,Uk]/(’l)l2 — 'UZ',U?>

of length n, then ©(C) is a self-dual code over For of length n(27%F).
Proof. Follows from Theorem [19 and Lemma [3.1.5 O
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3.1.2 Characters

In this section, we show that the ring B;; is a Frobenius ring by showing that there is a
generating character for the associated character module.

In the present situation, we have that the ring B, is isomorphic to @?i180,k;- We only
need to find a generating character for By then if x5, , is the generating character for By,

we have that the character y for R defined by

= [ xso. (@) (3.8)

where a corresponds to (aj,as,...,as) via the isomorphism, is a generating character for
B,k To do this, we recall that any finite field of order p® can be written as [F,(£) where £
is a root of the irreducible polynomial ¢(x) of degree e. That is [, () = F,[z]/(¢(z)). Then
each element in F,e can be written as > a;&" where a; € F,. This leads immediately to the

following lemma.

Lemma 3.1.8. The ring By = Fp[&, ur, us, ..., ug]/{q(z),u?), where all of the indetermi-
nates commute and q(z) is an irreducible polynomial of degree e. Each element in By can
be written as Z:;(l) ZAg[k] &°(ds) aua, where ds € F,. Let n be a complex primitive root of
p-th root of unity. The generating character for By is given by (n)Zi;é 2ac(ds)a showing
that the ring is Frobenius.

Proof. We have already explained why each element can be written in that form.

The unique minimal ideal of By is the orthogonal of the unique maximal ideal. There-
fore, the minimal ideal is a = (ujus---ug). It follows that any ideal that is contained in
ker(x) must contain the ideal a. But we have that x(ujug---ux) = n which gives that
ker(x) contains no non-trivial ideal. It follows that the map is a generating character and
then the ring By is a Frobenius ring. O

The next theorem follows from the fact that the ring decomposes by the Chinese Re-

mainder Theorem.

Theorem 20. Let

)
|
—

£5(dy) ) = (n)=e=0 Zacim (@),

AC[K)

I
o

S

The ring Bj = @?;Bo,k has a generating character of the form:
9
X = H Xis
i=1
giwing that the ring B, is a Frobenius ring.
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Proof. We have that B;, is isomorphic to @?i115’07k. It follows that the generating character
is x from Lemma [3.1.8|
Then the ring is Frobenius since it has a generating character. O]

Let T be a square (pT)QHk by (p’“)QHk matrix indexed by the elements of B;; and let

Ta,b = Xa(b) = X(a’b)7 (39)

where Y is the generating character of E]\k
From Definition 25| we know that the complete weight enumerator of a code C is defined
as
r—1
cwee(Tagy Tays ooy Tayp_y) = Z szz(c), (3.10)
ceC i=0
where there are n;(c) occurrences of a; in the vector c.
It follows that if C is a linear code over B, , then
1
cweer = ﬁcwec(T- (X0, T1y vy Tpeq))- (3.11)
By collapsing T" as in [64], we get that if C is a linear code over B, , then
1
Wer(z,y) = WWCW + (IBjxl = Dy, z — y),
where We(x,y) denotes the Hamming weight enumerator of C.

Now recall that the Lee weight enumerator of a code C is defined as:

Le(a,y) =Y aNmwielelywie(©) (3.12)

ceC

where N is the length of ©(C).

From Section 3.1, we know that when the characteristic of the finite field is 2, then
O(C*) = O(C)*+ which allows us to find the MacWilliams identities for the Lee weight
enumerators of codes over

Bji = For[v1,v2,...,05,u1,Us, ... Jug] /(07 — v, u?)
in the following way:
L€€CL(2) == W@(CL)(Z) == W@(C)L(Z)
where Leec(z) is the Lee weight enumerator and W denotes the Hamming weight enumer-

ator. This leads to the following theorem.

Theorem 21. Let C be a code of length n over

Bji = For[v1,v9, ..., 05, u1,ug, . .. Jugl/ (W — v, u?)
then . .
Leecj_(z) = m(l + Z>2j+knL€€C (1 _T_ z) . (313)
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3.2 (G-Codes over B;;.

In this section, we study group codes over the ring B; ;. We recall the following definitions
from [29] that we apply in our setting:

e Let B;; be a local Frobenius ring with unique maximal ideal m;, and let wy,..., w, be
vectors in B}, Then wy, ..., w, are modular independent if and only if dYoaw; =0
implies that a; € m; for all j.

e Let wy,...,w, be non-zero vectors in Bj;. Then wy,...,w, are independent if
> a;w; = 0 implies that a;w; = 0 for all j.

In [29], it is shown that if the ring is local, then any modular independent set is a minimal
generating set and that if the ring is not local then any set that is both modular independent
and independent is a minimal generating set. We shall call such a set a basis for the code.

In [23], it is shown that G-codes are linear codes in R™ if and only if they are left
ideals in a group ring. Specifically, let v € B; ;G and let C(v) be the corresponding code
in B7,. Let I(v) be the set of elements of B;,G such that ) «a;g; € I(v) if and only if
(a1, 9,...,a,) € C(v). Then I(v) is a left ideal in B;;G.

The following is immediate from these results.

Lemma 3.2.1. Letv € RG, where R is a finite ring and G is a finite group. Then Aut(C(v))
contains G as a subgroup.

Proof. This follows from the fact that the action of G on the coordinates of C(v) necessarily

holds the code invariant, since it corresponds to an ideal in the group ring. O]

It is also shown in [23] that for a commutative Frobenius ring R, if C is a G-code for
some G then its orthogonal C* is also a G-code.
The following definition is given in [23].

Definition 52. Let G be a finite group of order n and R a finite Frobenius commutative
ring. Let D be a code in R*™ where the coordinates can be partitioned into n sets of size s
where each set is assigned an element of G. If the code D 1is held invariant by the action
of multiplying the coordinate set marker by every element of G then the code D is called a
quasi-group code of index s.

The following is immediate from the definition.

Lemma 3.2.2. Let C be a linear G-code over Bjy, then ©(C) is a quasi-G code of index
AL
" ’
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Lemma 3.2.3. Let G be a finite group of order n and R a finite Frobenius commutative
ring. A quasi-G code of index s in R*"™ is equivalent to a group code under the action of the
finite group G*.

Proof. Consider a quasi-G code of index s in R™*. Reorder the coordinates of R™ so that the
n coordinates in the orbit of a coordinate under the action of group G are grouped together.
Then the coordinates in R™ are arranged into s copies of n coordinates where the code is
held invariant by the action of the group G on each block of n coordinates. This gives the
result. O

These two lemmas lead to the following important theorem.

Theorem 22. Let C be a linear G-code over By, then ©(C) is a G code over F,r, which
gives that Aut(C) necessarily contains G?™" as a subgroup.

Proof. Lemmam gives that ©(C) is a quasi-G code of index 2/7%, then Lemmam gives
that ©(C) is a G¥"* code. Finally Lemmam gives that Aut(C) necessarily contains G2
as a subgroup. O

This theorem can be extended even further in the case when the base field has even

order.

Corollary 3.2.4. Let C be a linear G-code over B;j, where the base field is For. Then
Aut(C) necessarily contains G¥™" and k swap maps which generate an additional subgroup.

Proof. Theorem [22) gives the first part and Corollary gives the second part. O

3.3 Projections and lifts of self-dual G-codes over B;;.

Define 7y, : Bjx — Bjm by Trm(u;) = 0 if ¢ > m and the identity elsewhere. That is, 7
is the projection of B;; to B;,,. Note that if & < m, then m,, is the identity map on B; .
Also define 7j; : Bjx — By by m;,(v;) = 0 if 4 > [ and the identity elsewhere. That is, m;;
is the projection of B, to B; ;. Note that if 7 <[, then 7;; is the identity map on B, ;. Now,
let a € B;; and define

k), @m) = Bjg = Bim

by
H(jvk)v(l»m) (a> = 7Tj7l(ﬂ-k57m(a))'
That is, 11 x),1,m) is the projection of B; to By .
Example 3.3.1. Let By 1 = F3lvy, u1]/ (v —vi,u?). Consider the projection of a = 2+ vy +

2uy + 2viuy from By to By = Fs. By the above definition we have that H(171),(0,0)(2 + vy +
2U1 + 2U1U1) = 7T170(7T170(2 “+ v + 2u1 + 2U1U1)) = 7T170(2 + ’U1) = 2.
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We allow j and k to be oo as well and denote this map as Il c0),@,m)- In this case the
ring Buoo is an infinite ring. If C = Il x),1,m)(C’) for some C" and j > I,k > m, then C' is
said to be a lift of C.

Theorem 23. Let C(v) be a self-dual G-code over Bjy. Then Il x) am)(C(v)) is a self-
orthogonal G'-code over By ,.

Proof. We first show that II; ) um)(C(v)) is a self-orthogonal code over By,,. Let w =
(wy,ws, ..., wy,) and z = (21, 29, . . ., 2,) be vectors in C(v). We have that

iy, m) O wizi) = > ([igiky,aam) (w03 gy, 1) (2))-

If Z Wiz = 0 in Bj,k then H(j,k),(l,m) (O) =0 so

(L, @m) (W) g k) 0m) (2)) @my = 0

Therefore I1(; 1) 1,m)(C(v)) is self-orthogonal.
To show that IL(; 1) 1,m)(C(v)) is also a G-code, we notice that the projection IL; x) 1,m)(C(v)) =

I k), 0.m) ({0 (v))) corresponds to I k) 1m) (V) = I k), m) (g ) g1 + I k) (1m) (Qgs ) G2 + - - - +
I k), m) (g, ) Gns Where o, € Bj . Thus I1(; 1y 1.m)(C(v)) is a G-code over B;y. O

Theorem 24. Let w € B;,,G generate a self-dual G-code over By ,,. Then w generates a
self-dual code over Bj for all j > 1 and k > m. Moreover, the self-dual code over B, is
also a G-code.

Proof. Let C;; be the code generated by w € B;;G. We proceed by induction. We know
Ci.m 1s a self-dual G-code by assumption.
Assume C,j, is a self-dual G-code. We have that C;;, = (o(w)), where w € B;;G,

Cj+1,k = Cj,k s> Uj+1Cj7k7 where C]’,k N ijCM = @ and Cj’kJr]_ = (i + ukHCM, where Cng N
up+1Cjr = 0. Then we have that Cji1 5 = (0(w)) Bvj1(o(w)), Cjrp1 = (o(w)) Bugy1{o(w))
and [Cjy1k| = [CixllCinl = V() V()™ = V(0")¥™" = |Ciara|- Then for vectors

w,z, W',z € Cj;, we have (since C;, is self-dual by assumption),

WA+ vaw,z+vnaz]in = [w,z]; +ujaw, 2

+ Uj+1[W/, Z]j -+ U]2~+1[Wl, Z/]j =0
and

(W + Up W', Z + Uk+lzl]k+1 = [wW, 2], + up[W, Z/]k

+ up [Wz)k + ui+1[w’, '], = 0.

Hence Cj;1 and Cj 41 are self-dual codes since both are self-orthogonal and both have the
proper cardinality. Therefore by mathematical induction C;, is a self-dual code for all finite
J and k.
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Next we prove that Co o is self-dual. If z,w € C o then there exist j and k with
z,w € C;; and hence [z,w]; = [z, w]; = 0 which implies [z, W] = 0. If w € C5  then
w E Cj%k for some j and k which gives that w € C;;, and hence in Cy o. Therefore Cs o is
self-dual.

To show that C;, is also a G-code, let w = ay, g1 + g, g2 + - - - + @, gn, Where oy, € By .
Then we see that C 41, = (0(w))@vj11(o(w)) corresponds to w+v, 1w = (g, +0j410, ) g1+
(g + V410, )ga+- - -+ (ayg, + V110, )gn in B xG. Similarly, C; ;41 = (o(w)) S ugs1(o(w))
corresponds to w + 1w = (ag, + U110, ) g1 + (g, + Uk110,) g2 + - -+ + (g, + U100, ) Gn,
in B;r+1G. Thus C; is a G-code. O

As a consequence of the above theorem, we have the following result.

Corollary 3.3.1. If C is a self-dual G-code over By, then there ezists a self-dual code C'
over Bj, for j > 1 and k > m with I 1y a.m)(C") =C.

3.4 The Gray image of G-codes over B,

In this section, we restrict our attention to the ring B, = For[v1, va, . .., vj, U1, ug, . . ., ug /(vi—

v;, u?) and employ the Gray map defined in Section . We extend the Gray map © linearly
to all of B, and define the Lee weight of an element in B, to be the Hamming weight of

. . . . . j+k
its image. We get a linear distance preserving map from B to FZn

From Theorem (19| we know that for any linear code over B;; we have O(C*) = O(C)*.
As a consequence of this, we get the following result.

Corollary 3.4.1. Let C be a G-code over B; . Then ©(C*) = 0(C)*.

Proof. From the definition of a G-code, we know that C is linear. The rest follows from
Theorem [T O

Theorem 25. IfC is a self-dual G-code of length n over B;j, then O(C) is a self-dual G-code
of length n(277%) over Fyr.

Proof. If C = C*, then ©(C) = ©(Ct) = O(C)* and we have that ©(C) is self-dual. To
show that ©(C) is also a G-code, we see that O(C) = O({c(v))) corresponds to O(v) =
O(ag)g1 +O(ag,)g2 + - - + O(ay, ) g, in ForG. Thus, ©(C) is a G-code. O

Theorem 26. Let C be a self-dual G-code over Bjy, of length n, then ©(C) is a self-dual
G"-code of length n(271%) over For. If the base field is the binary field and the Lee weight of
every codeword is 0 (mod 4), then ©(C) is a Type II binary code.

Proof. 1f C = C* then by Corollary [3.4.1, ©(C*) = 6(C)*. O
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Since © is distance preserving, the following corollary immediately follows from the
bounds given in [62]. Note that for j > 1 and k£ > 1, the length of the binary image of a
code over B, will always be divisible by 4, hence the case n = 22 (mod 24) is not possible
for the image of an B, code.

Corollary 3.4.2. Let d(n,I) and d(n,II) denote the minimum distance of a Type I and
Type 11 G-code over B, of length n, respectively, where the base field is Fy. Then, for j > 1
and k > 1, we have
9G—-+(k-1),,
dr(n,I),dp(n,IT) <4 {—J +4.

6

3.5 Reversible G-codes over Bj

Lastly in this chapter, we extend some results from [9] on reversible G-codes. Reversible
codes have applications in DNA computing. The desirable property of a DNA code is that
the reverse of a codeword with respect to a base of length 2* is necessarily in the code. For
a detailed description of DNA codes and their applications, please see [9]. In [9], it is also
shown that with a particular listing of the elements of the finite group G of even order,
the well-established isomorphism given in Equation ([1.18)) gives a reversible code. In this
section, we extend some of the results from [9] over to our new ring B, ;. We start with a
definition.

Definition 53. A code C is said to be reversible of index « if a; is a vector of length o and
c® = (ag,ay,...,a,1) € C implies that (c*)" = (as_1,a5_9,...,a1,89) € C.

For the remainder of this section, we fix the listing of the group elements as follows.
Let G be a finite group of order n = 2l and let H = {e, hy, ha,...,hi_1} be a subgroup
of index 2 in G. Let 8 ¢ H be an element in G, with 3~ = B. We list the elements of
G={g91,92,---,9n} as follows:

{67 h17 R hl—lvﬁhl—laﬁhl—% s 76h276h176}' (314>

In [9], the following is proven.

Theorem 27. Let R be a finite ring. Let G be a finite group of order n = 2l and let
H ={e,hi,ha,...,h_1} be a subgroup of index 2 in G. Let f ¢ H be an element in G with
p~Y = B. List the elements of G as in , then any linear G-code in R™ (a left ideal in
RG) is a reversible code of index 1.

We now employ the map defined in Section and prove the following result.

Theorem 28. Let G be a finite group of order n =2l and let H = {e, hy,ha,...,h_1} be a
subgroup of index 2 in G. Let 3 ¢ H be an element in G with 3~ = [ and list the elements
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of G as in . 1If C is a linear G-code in B;y (o left ideal in B;iG), then ©(C) is a
reversible G2 -code over Fy-.

Proof. By Theorem we have that C is a reversible code. Therefore, if (¢g, ¢q,...,¢,-1) €C
we have that (c¢,—1,¢n—2,...,¢1,¢) € C, where ¢; € B,x. Then O(¢;) is a vector of length
27+ This gives that

(©(¢o),0(c1),...,0(ch1)) € O(C)

and then
(O(cn-1),0(cn-2),...,0(c1),0(cp)) € O(C).

This gives the first part of the result.
The last statement comes from Theorem 22

The following result can also be found in [9].

Theorem 29. Let R be a finite ring. Let G1,Gs,...,G, be finite groups, each of order
20 and let Hy, Hs, ..., H,, where H; = {e;, hi;,hiy, ..., hi,_,}, be subgroups of index 2 in
G1,Gy, ..., G, respectively. Let B; ¢ H; be an element in G; with B;' = f;. List the

elements of G; as

€, hi17 hi27 LI hiZ71 ) ﬁihigfp Bihig,w ceey ﬁihim ﬁlhll ) Bl (315)
Then any linear code D generated by the matriz

o(vy)  o(ve) o(vg) ... o(vy)

M= o(v) o(vp_1) o(vp_2) ... o(v)

9

where v; € RGy, is a reversible code of index 1.

With the above theorem, our ring B;, and the Gray map from Section [3.1}, we have the

following result.

Theorem 30. Let R be a finite ring. Let Gy,Gs, ..., G, be finite groups, each of order
20 and let Hy, Ho, ..., H,, where H; = {e;, hi,,hiy, ..., hi,_,}, be subgroups of indezx 2 in
G1,Go, ..., G, respectively. Let 5; ¢ H; be an element in G; with 51._1 = ;. Lust the
elements of G; as

€, hil) hi27 ey hiz_p/Bihig_la ﬁihig_ga s )/Bihiw /Blh217/81 (316>
If D is a linear code in B}, generated by the matrix

o(vy)  o(vg) o(vg) ... o(vp)

M= o(v,) o(v_1) o(vp_e) ... o(vy1)

where v; € B, xG;, then (D) is a reversible code over Fyr of index 277,
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Proof. By Theorem we have that D is a reversible code of index 1. Therefore, if
((ag, a1, ... a5 _4),(ad,a3,....a3,_4),...,(ay,ay,... a5 ;) €D

we have that

((agé—lv agﬁ—Q? te 7ag)7 (a;le_—lv ag£:127 t 7a8_1)7 ety (aéf—h G%Z—Q’ te >a(1))) € Dv

where " € Bj, with i € {0,1,2,...,20 — 1} and m € {1,2,3,...,n}. Then O(a}") is a
vector of length 271%. This gives that

((@<a(1))7 @(a%)u s 7@(6156—1))’ (@<a3)7 @<a%)7 ce >@(ag£—1))a )

(0(a5), O(a1), . .., O(az_,))) € O(D)

then
((B(ag_1), Olaz,_s), - -, O(ag)), @((age_—ll)v @(age_—lz)a EER) ®<ag_l))7 RN
(O(ay—1), Olay_s),- .., O(ap))) € O(D).
This proves the result. [
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Chapter 4

Extending an Established
Isomorphism between Group Rings
and a Subring of the n x n Matrices

In this chapter, we extend the isomorphism given in Section [[.4.3] As we have mentioned
earlier, the map o gives different n x n matrices for different choices of the group G. These
matrices are fully defined by the elements appearing in the first row - this property can
be used in algebraic coding theory and specifically in constructing generator matrices so
that the search field can be minimised but new codes can still be obtained. We presented
an example in Chapter [2 In fact, there is an extensive research on constructing generator
matrices with the use of the map o, please see [14] [15, 16, B8, [40] for some interesting
examples.

We want to continue in this direction, namely, we want to be able to construct more n xn
matrices over the ring R that are fully defined by the elements appearing in the first row and
cannot be obtained from the map o. We therefore present an extension of the isomorphism
given in [5I]. Our extension enables one to construct many interesting, complex n X n
matrices over the ring R that are fully defined by the elements appearing in the first row.
We present our extend isomorphism and show when our matrices are not equivalent to the
matrices obtained from the map ¢. This chapter is joint work and the results are published
in [1§].

4.0.1 Extending the M(G) Matrix

In this section, we extend the matrix M(G) given in Equation (1.17). This matrix consists
of entries which are the elements of the group G. In our extension, this is also the case, the
matrices will consist of the elements of the group G but in a different order. We now extend
the matrix M (G).
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Let {g1,92,---,9n} be a fixed listing of the elements of G. Let {hy, ha, ..., h.} be a fixed
listing of the elements of H, where H is a group of order r. Here, let r be a factor of n with
n >rand n,r # 1. Also, let GG, be a subset of G containing r distinct elements of G. Define

the map:
¢: Hw— G,
¢
hiy = g
¢
hay — g0
he % g,

This map sends r distinct elements of the group H to r distinct elements of the group

G.
Corollary 4.0.1. The map ¢ is a bijection.

Proof. The domain of ¢ consists of r distinct elements of H. The codomain of ¢ consists of

r distinct elements of G. It is then clear from the above diagram that ¢ is bijective. ]

Now, let M(G) be the corresponding matrix of G. By partitioning M (G) into an 2 x *
block matrix, in which each block has order r and by applying the map ¢ in individual
blocks we can form the following matrix:

Al A2 Ag e A%
A%+1 A%+2 A%+3 . e A2Tn
A('rfrl)n_"_l 14(7‘:61)77,_’_2 A(Tfrl)n+3 A:‘%
where each block has one of the two following forms:
~1 ~1 -1
9; Yk 9; Ge+1 oo G5 Gkt (r-1)
9ihoe  9ihgkr - 95 Oke—)
A = gj_J:QQk 9]-_4:29“1 e gjllzgm(rq) ,
~1 ~1 ~1
Yj4r—19k  Yjrr—19k+1 - Gjpr_19k+(r-1)
or
~1 ~1 ~1
9; Yk 9; Gk+1 e 9; Gk+(r-1)

Gu((hi)y ' (hi)1)  dul((hi)s " (he)2) ((hi)
h

o(h)3" (1))
Ay = [ @((hi)z" (hi)1)  eu((hi)z ' (hi)2) - @u((hi)3" (R

) |

Gi((ha)y M (hi)1)  @u((ha) M (ha)2) o @u((ha)yt (ha)r)

(
wherel:{1,2,3,--~a:f_§}
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and where:

¢l : Hz = Gr
(i) 2 95 ' g
(hi)s 2 9; gk

¢ _
(hi)r — 9; 1gk+(r—1)-

Here we have that when [ = 1 then j =1,k =1, when [ = 2 then j = 1,k = r + 1, when
I =3then j=1,k=2r+1,... whenl = 2 then j =1, k=n—r+1 Whenl =" +1
then j =r+ 1,k =1, when [ = = + 2 then j = r+ 1,k = r+ 1, when [ = 2 + 3 then
j=r+1Lk=2r+1,... Whenl:%"thenj:r—{—l,k::n—r—l—l, ..., and so on.

By splitting M (G) into an » x * block matrix we have that in each block, the first row
consists of r distinct elements of G - this is because M (G) is a Latin square. Thus, since we
can apply the map ¢ in individual blocks, it allows us to employ different groups of order
r in different blocks, i.e., we could employ Z—; different groups of order r. In the above, 4]
means we apply the map ¢; in this specific block. Now, [ € {1,2,3, ..., 7:—3}, which means we
can employ Z—; different maps ¢;. We note that the map ¢ in the above matrix determines
the order of the r distinct elements of G (which appear in the first row of a block) in the
next rows. Thus a block of the A] form is fully determined by the elements appearing in
the first row of that block. We call the above matrix the composite construction or for
simplicity the composite matrix of G and Hy, Hs, ..., H n2 (depending on how many groups
of order r we use) relative to these listings and denote it by M(G, Hy, Hsy,...,H,2). We
note that if the composite matrix consists of blocks which are of the A; form onlyrz‘)chen it

is equivalent to the matrix M (G). We therefore, from now on assume that the composite
matrix M (G, Hy, Hs, ..., H,2) consists of at least one block of the A] form.
2

T

Corollary 4.0.2. Let G be a group of order n, such that n # 1. Let H; be a group of order
r such that r is a factor of n with n > r and r # 1. We can then form a composite matriz

M(G,Hy,Hy,...,H,2) if and only if the order of the group G is not a prime number.
r2

Proof. Assume the order of the group G is n, where n is a prime number. We know from
the above definition that to form a composite matrix there has to be a group of order r such
that r is a factor of n with n > r and n,r # 1. Since the order of the group G is prime, the
only factors of n are n itself and 1, which does not satisfy the definition. This concludes the
proof. O

We now present an example of a composite matrix. As stated above, the matrix will
consist of the elements of the group G.
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Example 4.0.1. Let G = (z,y | ' =9*> = 1,2¥ = 27') ¥ Dg. Let H; = {a,b | a*> =1 =
1,ab =ba) = Cy x Cy. Let Hy = (c | ¢* = 1) = Cy. We now define the composite matriz as:

M(Ga HlaHQ) - (jll ﬁ?) )
3 4

where:
AN
AL A,
9'n 91" 9 9 ‘gs 91" 9195 9196 91'gr 91" 9s
@1((]1) (b)) ¢>1((h) Y(h1)2)  1((Pa)3 ' (Pa)s)  @1((h1)3 ' (Pa)a) | @2((h2)3 ' (h2)1)  @a((h2)3 ' (h2)2)  @a((h2)3 ' (h2)s)  ¢a((h2)3 " (h2)s)
G1((h1)5 ' (h)1)  61((Ra)3"(he)2)  du(Pa)5 ' (R)s)  d1((ha)5 ' (Ba)a) | d2((P2)5 ' (h2)1)  @a((h2)s'(ha)2)  2((ha)3 ' (h2)s)  d2((ha)s ' (h2)a)
O1((h)7' (h)1)  ¢1((P)i'(h)2) ¢l ) (hl 3)  G1((h)i'(h)a) | d2((ho)7' (ha)1)  @a((h2)i'(ha)a)  @a((ha)i'(ho)s)  da((ha)i' (ho)a)
g5 g1 g5 g2 g5 95 s g5 ' 95 5 ' g6 9597 95'9s
¢3((ha)y ' (ha)1)  ¢3((ha)y'(ha)2)  @s((h )5 (hz}e) ¢3((ha)y ' (ha)a) | Ga((h1)5 (ha)1)  Ga((h1)3'(h)a)  Ga((h1)3 ' (ha)s)  pa((h)y ™ (ha)a)
@ ((h2)3'(ha)1)  @3((h2)5' (ha)a)  @s((2)y' (ha)s)  @s((ha)y' (h2)a) | da((h1)5' (Ba)1)  da((Mn)3' (hr)2)  da((hn)5' (h)s)  a((Pa)3 " (F)a)
¢3((ha)i' (ha)1)  ¢3((ha)i'(ha)2)  ¢s((ha)i'(ha)s)  ds((ha)i'(ha)a) | Ga((h)T (ha)1)  Ga((h)i'(h1)2)  Ga((ha)i'(ha)s)  pal((h)i" (ha)a)
and where:
b - (h)i 2 g1gs by (h)i 2 gty
b for i = {1,2,3,4} 2 forwhen {i=1,j=5,i=2,7=6,i=3,j=7,i=4,7 =8}
o (h)i g5t , (h)i 2 g5,
¢3 by

for i = {1,2,3,4} forwhen {i=1,7=5,i=2,7=6,i=3,j =7,i=4,j = 8}.

This results in the following composite matrix

1 T x?2 28 Y vy 2y 2y

x 1 2% 2?2 |2y oy ay 2Py

2?2 22 1 oz |2y Py oy ay
Al AL 2 oz 1 |2y 2% 2%y y
AL Al y 2y 2y ay | 1 2 2 x
vy oy 2’y 2ty | 23 1 T 22

2?2y xy oy 2y | 2? T 1 3
2y 22y oxy oy |z 2?2 1

In the above example, all four blocks have the A; form. We observe that in the resulting
composite matrix, all four blocks are Latin squares and the composite matrix itself is a Latin

square.

Example 4.0.2. Let G = (z | 28 = 1) =2 Cs. Let H; = {(a,b | a®* = V* = 1,ab = ba) =

Cy x Cy. We now define the composite matrix as:
Al Ay
( ) 1) <A3 A4>
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9 'n 91 ' 92 91 ' g3 91 g4 91'9s 9r'9 919 gr s
G1((h1)3 " (h1)1)  d1((h1)3 ' (ha)2)  d1((ha)3 ' (ha)s)  dn((ha)3'(ha)a) | 95095 92'96 95'97r 95'9s
1 ((h)z (h)1)  o1((hn)z ' (hn)2) &1 ((ha)3 ' (ha)s) (R )g( Va) | 95t9s 95'96 95'9r 95 'gs
P1((h1)i " (ha)1)  d1((ha)i'(ha)2)  du((ha)i'(ha)s)  dr((ha)i'(ha)a) | 93'9s 9i'9s 91'97r 9i'gs

950 95 ' 92 95 ' gs 95 ' 94 9595 95'96 9597 95'9s |’
9% % 96 ' 92 95 93 96 94 96'95 959 9597 95 '0s
97 g1 9792 9793 9794 97'95 97'96 9797 g7 'gs
9 ' g1 95 ' g2 95 '3 9594 95'05 95'96 9597 g5 s

where:

¢ _
(h)i = 919

O fori= {1,234}

in AY. This results in the following composite matriz

1 = 22 23| 2* 25 2% 2t
x 1 2 22| 2 2t b ab
22 221 x| 2?2 2t 2P
Al A\ | 2 2 oz 1|z o2 2 ot
Ay Ayl | 2t 2 28 271 oz 2 a8
2 ot 2 28 2T 1 x 2P
22 3 ot S 71 o
x 22 o 2t 28 2T 1

We can see that in A} the 4 distinct elements of G appear ezxactly once in each row and
exactly once in each column of that block. This is not the case in As, A3 and Ay. Also the

composite matriz itself is not a Latin square.

It is possible that the composite matrix M (G, Hy, Ha, . . ., HL;) is a Latin square as we
saw in Example [4.0.1] Before we prove when this is the case, we first look at the form of
the composite matrix.

The rows of the matrix M (G) from Equation have the following form gj_l g1 gj_1 92

g;lgn where j is the jth row of M(G). This is not the case in the composite matrix
M(G,Hy,Hs, ..., H%) We now look at an example.

Example 4.0.3. Let G = (z,y | ' =y*> = 1,2¥ = 27') 2 Dg. Let H; = {a,b | a*> = V? =
1,ab = ba) = Cy x Cy. We now define the composite matrix as:

A Al
M(G, H) = (A;, Ai) B
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g7 g9
) hi)s)  a((h
3 ()s)  da((

b1
1
b1

flﬂs

)2 (ha)a)
)3t (h1)a)
)it (l)a)

gi'o 90 9'gs 91 s 995 916 g
G1((h)3 (1) é1((h)3 ' (Ba)2)  d1((ha)y " (ha)s)  dr((h)3 " (n)a) | ()3 !
P1((h1)3 ' (h1)  du((h)3' (ha)2)  d1(hn)3 ' (ha)s)  dr((Bn)5 " (Ra)a) | da((ha):
1((h)i ' ()1)  da((h)g' (h)a)  @a(hn)i' (ma)s) & ((h)i' (Bn)a) | @a((Pa)"' (ha)1)  da((ha)i'(hn)a)  a((ln)i'(ha)s)  a((R

9 ' 9592 95 93 950 959 95 96 95 g7 95 g
%0 99 9593 %9 995 9 96 9597 95 'gs
97 o 97' % 97'9s 9794 9795 976 9797 9798
99 959 95'gs 959 9595 9596 9597 95 ' gs
where:
b1 1 P2 1
b1 (h1)i = 91 gi by (h1)i = 91 9;
1° 2!

for i = {1,2,3,4} forwhen {i=1,j=5,i=2,7=6,i=3,j=7,i=4,5 =8}

in A} and AY. This results in a composite matriz of the following form:

1 x 22 2|y axy 2%y 2y
x 1 22 22 |y oy 2y 2Py
2 2 1 x| 2y Py oy ay

3 2 3 2

T T x 1 |z2y z%y xy y

M(G, Hy) = 3 2 1 3 2

y 2y 2y ay 2 x x
vy oy 2y 2y | x 1 2P
2?2y xy oy 2Py| 2w 1 28
2y 2%y oxy oy | 2 2 1

We now look at the rows of M (G, Hy). Let 1,73, ... 18 be the rows of M (G, Hy), then each
row is formed by multiplying the elements g1, go, ..., g, of G by some elements of G. These
elements of G do not have to be the same but they can be. For example:

r= (D1 + (D + (2 + ()2 + (Dy + (Day + ()2’y + (1)2°y,

the first row of M(G, Hy) is obtained by multiplying each element of G by the same group
element of G, namely 1. Next,

ry = ()1 + (@) + (2)2” + (2%)2® + (2)y + (2°)2y + ()27 + (2%)2%,

the second row of M(G, Hy) is obtained by multiplying each element of G by the group

elements of G; x or x3. Lastly,
rs = (@y)1 + (2°y)z + (2Py)a® + (2°y)2’ + (2Py)y + (2y)zy + (2Py)a’y + (2°y)2’y,

the eighth row of M (G, Hy) is obtained by multiplying each element of G by the same group

element of G, namely x3y.

The above example highlights the difference between the matrix M(G) from Equa-
tion (1.17)) and the composite matrix M (G, Hy, Hs, ..., H,2). Namely, each row of M(G) is
2
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of the form gj_lgl gj_lgg o gj_lgn where j is the jth row of M (G) (we multiply each element
of G by the same group element of ). In the composite matrix M (G, Hy, Ha, ..., H,2),
some rows are formed by multiplying the elements of G by different group elements oerG.
Therefore, we can define the composite matrix M (G, Hy, Ho, . . ., H%) as:

91:91 91,92 91393 --- G1,9n
M(G7H17H27' .- ,Hﬁ) = g2l.gl g22.g2 92:‘?93 ‘ g27ign ) (41>
r2
9n191 9n292 9nsz93 -+ Gn,Gn

where the elements g;, are simply the group elements G. Which elements of G these are,
depends on how the composite matrix is defined, i.e., what groups of order » we employ and
how we define the ¢; map in individual blocks.

This notation of the composite matrix M (G, Hy, Ha, ..., H,2) can be used to prove the

2
following results.

Corollary 4.0.3. The matric M(G, Hy, Hs, ..., H,2) is equivalent to the matric M(G) if
2
the group elements gj, in Equation are the same for alli € {1,2,...,n}.

Proof. If g;, = g;, = 9, = - -+ = g;,, in Equation 1' then each row of M (G, Hy, Ho, ..., H,2)
has the form ¢;91 ¢j92 ... ¢g;jg, where g; is an element of . This is exactly what each
row of M(G) looks like. Thus M (G, Hy, Ha, ..., H,z2) is equivalent to M(G). O

2

T

Corollary 4.0.4. Let {g1,92,93,---,9n} be a listing of the elements of the group G and
let M(G) be the corresponding matriz. Let {g], g5, G5, --, 9.} be a different ordering of
the elements of the group G and let M'(G) be the corresponding matriz. Then M'(G) is
permutation equivalent to M(G).

Proof. Without loss of generality, let {gs, g2, 91, Gn, Gn—1, gn—3} be a listing of the elements
of the group G. Then

95'9s  95'92 9391 95'9n 95 Gn-1 --- O3 Gn-3
95'95 9292 939 93 9n 93 Gn-1 - G5 Gn-3
9'9s 99 gi'or 9i9n 91 '9n—1 - 91 'On-s
MG =995 992 9'0 99 Gn'On—1 - Gy '9n-s
9003 9102 Gntigt 9 tiGn GntiGn—1 oo 9nliGn-s
9nls393 Gnls92 GnlsGi nlsOn GnlsOn-1 - GnlsOn-s

It is clear that M’'(G) is row and column permutation equivalent to M (G). This concludes
the proof. O

53



We now show when the matrix M (G, Hy, Hy, ..., H,2) is not permutation equivalent to
2

r

M (G) for any arrangement of the elements of G.

Theorem 4.0.5. Let M (G, Hy, Hs,...,H,2) be a composite matriz such that at least one
row of M(G, Hy,Hy, ..., H,2) has the follgwing form
>

95191 95292 45393 --- G§,9n;

where gj, is not the same for alli € {1,2,...,n}. Here, g;,9;, € G and j is the jth row of the

matriz M (G, Hy,Hy, ..., H,2). Then M(G, Hy, Hy, ..., H,2) is not permutation equivalent
r2 r2

to M(QG) for any arrangement of the elements of G.

Proof. Assume that the matrix M(G, Hy, Hy, ..., H n2 ) is permutation equivalent to the
matrix M(G) for some arrangements of the elements of G. This is equivalent to say that
the matrix M (G) is permutation equivalent to the matrix M (G, Hy, Hs, ..., H,2) for some
specific arrangement of the elements of GG. But we know from the previous coroli;ry that for
any arrangement of the elements of GG, the corresponding matrix is permutation equivalent
to M(G). This implies that for any arrangement of the elements of G, the rows of the
corresponding matrix will be of the form ¢;91 gjg2 ¢;93 ... ¢;g» Where g; is any element
of G. In other words, there will be no row of the form g;, g1 95,92 95593 ... gj,9n, Where
gj, is not the same for all i € {1,2,...,n}. Thus, M(G) is not permutation equivalent to
M(G,Hy, Hy, .. ,H%) for any arrangements of the elements of (. This contradicts our

assumption. Thereforre7 the matrix M (G, Hy, Ha, ..., H,2) is not permutation equivalent to
2

the matrix M (G) for any arrangement of the elements of G. O

We now present another example of a composite matrix that is a Latin square and then

prove when such matrices form Latin squares.

Example 4.0.4. Let G = (z,y | 2 =y?> = 1,2¢ = 271) 2 Dg. Let Hy = {a,b | a®> = b =

1,ab = ba) = Cy x Cy. We now define the composite matrix as:

Al A

90 9 9 9193 91" 94 9795 996 9i'gr gi'gs
O1((h1)7 " (h1)1)  d1((h1)3 " (ha)2)  d1((h1)3 " (ha)s)  d((ha)3'(ha)a) | 92005 92'96 95'9r 95'9s
O1((h)z' (h)1)  @1((h)5 ' (h)2)  d1((h)5 ' (h)s)  dn((ha)s'(ha)a) | 9595 95'96 95 97 95'9s
G1((h1)i " (h1)1)  d1((ha)i ' (ha)2)  d1((ha)i'(ha)s)  dn((ha)i'(ha)a) | 9i'9s 9i'9s 9:'9r 9i'gs

9 g1 9592 959 9594 995 95'96 959 95'9s |
9% 'n 96 92 96 93 96 94 995 969 9697 96 s
97 'q 97 ' 92 9793 97 0 9:'9s g:'96 97'9r 97 'gs
9% 95 92 95 ' g3 95 g4 95'95s 9596 95'9r 9s'0s
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where:

(h) 2 gl
for i = {1,2,3,4} '

in A). This results in the following composite matriz

1 x 22 2|y xy ¥y 2y
x 1 22 22 |2y oy oay 2ty
2 2 1 x 2 Py oy ay
Al Ay ¥ 2 x 1 | oy 2%y 2%y v
Az Ay y 2y 2’y wxy | 1 R
vy oy 2%y 2%y | 2 1 2P
2?2y zy oy 2Py| 2w 1 28
2y 2y xy oy | 2 2 2 1

Here, each of the blocks; A', Ay, As and Ay, is a Latin square. Also, the composite matrix
itself is a Latin square.

Corollary 4.0.6. The composite matric M(G,Hy, Hs,...,H,2) is a Latin square if the
2

T

elements g;,g; of Equation , each appear exactly once in each row and ezxactly once in
each column of M(G,Hy,Hs, ..., H,2).
2

Proof. Follows from the definition of a Latin square. m

The above corollary potentially opens up a new direction of research. Namely, since the
composite matrix M (G, Hy, Ho, . . ., H%) can have a form of a Latin square, can one consider
the possible groups G and H; to establish exactly and for what groups the composite matrix
is a Latin square? The classification of Latin squares of different lengths is an ongoing
research problem so perhaps one could investigate the structure of the composite matrix
M(G,Hy,Hy,...,H n2 ) further to find out if this matrix construction can in any way help
with classification and enumeration of Latin squares. Please see [I1] for a very detailed
explanation of Latin squares and open problems in this area.

The process of forming the composite matrix can be applied over again to individual
blocks of M (G, Hy, Ha, . .. ,H%). Assume the block of M (G, Hy, Hs, . .. ,H%) has an order
r1 such that 71 is not prime and r; > 1. Assume also that there exists a group (H;)" of order
r9 such that 7o is a factor of r; with vy > ry and 71,79 # 1. Then we can split the block
of M(G,Hy,Hs, . .., HLS) into an :—; X :—; block where each block has order r5, where in at

2
least one, we apply the bijective map ¢}, : (H;) — G,,, (here I" € {1,2,3,..., :—5} where 79
2
distinct elements of (H;)" get sent to 7o distinct elements of G. We can repeat this process
again if there exists a group (H;)"” of order r3 such that r3 is a factor of ry with ro > r3 and
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r3 # 1 and so on. We can therefore form a more complex composite construction. We now

look at an example.

={a,b| a* =0 =
Cy x Cy We now define

D16. Let H1

>~

Example 4.0.5. Let G

1,ab = ba)

X Tr = =1l.x7 =x
(x,y|2®=y*>=1,2¥ D

Cy x Cy. Let (Hy) = {c,d | ¢ = d?

the composite matrixz as:

1,cd = de) =

>~

)

4

/!

) Ay

As

{,

M'(G, Hy((H1)'))
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for when {i=1,j=5,i=2,j=6,i=3,j="7i=4,j=38,...

: /
in Aj.
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This results in the following composite matrix

X: Y| X v
Vi X1 Y2 X
X
X, Y, | X, Y
<<A;>' A2>_ Y, X2 VX
A, AL ’
A X.| Ya
X7
Y | X,

where X1 = circ(1,x), Y1 = circ(a?,23), Xy = circ(a?, 2°), Yy = cire(28,27), X3 = circ(y,

xy, 22y, 23y, xty, 20y, 2%y, 27y), X4 = cire(1,27, 25 2%) and Y, = circ(zt, 23, 22, x).

We finish this section with one more result.

Corollary 4.0.7. Let M(G, Hy, Hs, ..., H,2) be a composite matriz. Here, G is a group of
2

order n and H; is a group of order r. Witlhout loss of generality, assume A is an % X %
block of the composite matriz M (G, Hy, Hs, ..., H,2). Now let (H;) be a group of order rs,
2

r

(H;)" be a group of order r3 and so on. Also, let ri be a factor of n, ro be a factor of ry, rs
be a factor of ro and so on, such thatn > ry > ryo >r3 > ... and n,r; # 1. We can then

keep repeating the process of forming the composite constructions on the block A until the
T
Ti+1

divisor o 18 a prime number.

Proof. If the divisor of TTT is not a prime number then the resulting block matrix where
each block has an order r;; can be split further into a more complex composite construction
by considering a group of order less than 7;,; (not equal to 1) which is also a factor of ;.
If the divisor of TTT is a prime number then the resulting composite construction has blocks
of order r;;,; which is prime and the process can not be repeated again. This concludes the

proof. O

4.0.2 Extending an Established Isomorphism

In this section, we extend the isomorphism given by T. Hurley in [51]. This isomorphism
sends a group ring element of order n to an n X n matrix in which the entries are the elements
of R. This is also the case in our extended isomorphism but with a significant difference.
Namely, our extension allows us to construct more complex matrices over R. We will present
some interesting examples. We now extend the well-known isomorphism.

Let v = ag g1 +ag02+. .., 04,9, € RG. We now form the R(G, Hy, Hs, . .., H,2 ) matrix

o
of v denoted by M ((G, Hy, Hs, ..., H,2),v) and define it as follows:
2

T
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Qg1 Xgryge Xgiggs -+ Agygn

Qgy g1 Xgagga  Xgaggs -+ Qgy gy

Qgnigr Agnygz Ygnggs -+ Xgn,gn
Thus M ((G, Hy, Hy, ..., H,2),v) is in R, x,. Here, we assume that the order of the group
G is not prime so that the aboffe matrix is formed as the composite matrix in the previous
section, i.e., the elements g;, are the group elements of GG - which elements these are, depends
again on how the composite matrix is defined.
If we label the first column of M ((G, Hy, Ha, . . ., H%), v) as g1, the second column by

g2, and so on, and if b= >"" 3, ¢9; € RG then the coefficient of ¢; in the product b * v is
(Bg1s Bgas - - -+ Bg,,) times the i—th column of M ((G, Hy, Ha, . .. ,H%), v).

Given the listings of the elements of G and Hy, Hy, ..., H,2, form the matrix M (G, Hy,
H,, ..., H,2) relative to these listings. Then an R(G, H, H;,Q. .., H,2) matrix over R is a
matrix obtréiined by substituting elements of R for elements of M (G, H 1T,2H2, o H 52 ), so that
if two entries in M (G, Hy, Hs, ..., H n2 ) are equal as group elements then the corresponding
entries in the R(G, Hy, Hy, ..., H,2) matrix are equal.

Given the entries of the first r:)ZW of an R(G, Hy, Hy, ..., H,2) matrix, the entries of the
other rows are determined from the matrix M (G, Hy, Ho, . .. ,T2H,:§) of G,Hy, Hs, ..., HZ%;
each row and each column consists of elements of the first row determined by the matrix of
G,Hl,HQ,...,H%.

We now extend two results from [51].

Theorem 4.0.8. Let M (G, Hy, Hy, ..., H,2) be a composite matriz. Then there is a bijective
r2
ring homomorphism between RG and the n xn M(G, Hy, Hs, ..., H,2) - composite matrices
2

over R. This bijective ring homomorphism is given by € : v +— M((b, Hy,Hy,...,H,2),v).
o

Proof. Let G = {g1, g2, - - -, gn } be the listing of the elements of G and let H = {hy, ho, ..., h.}
be the listing of the elements of H. Also, let M denote the set of (G, Hy, H, . ..) - composite
matrices relative to these listings. Now define mapping €2 : RG — M as follows. Suppose
v=>" agg. Then

agll g1 CY912g2 a91393 e aglngn
Qv) = Qgyrg1 Xgayga  Xgaggs -+ Qgy g
g1 Xgnyge Xgnggs -+ Xgnpgn

This mapping is obviously additive, surjective and injective. It is thus sufficient to show
that © is multiplicative. Consider w =" | 8, ¢; and
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5{]1191 591292 591393 Bgmgn

Q(w) — /892‘191 /892.292 /892‘393 . /BQQngn

/Bgnlgl /8971292 Bgnggs e ﬁgnngn

Suppose w * v = ¢, where ¢ = Y " | 7,,9;- Then

Yo,00 Vgr,92 Vor395 -+ Vg1,9n
Qw) * Q) = 7g2.lg1 792.292 792‘3573 . 7g2‘ngn ’
Yon 91 Vangg2  Vanzgs -+ Vgnngn
and this of course is MG(RG, c¢) = Q(v * w) as required. O

We call the matrix {2(v) a composite construction or a composite matrix over R. From
now on {2 denotes the mapping €2 as in Theorem [4.0.8]

Theorem 4.0.9. Suppose R has an identity. Then v € RG is a unit in RG if and only if
Q(v) is a unit in M,(R).

Proof. Suppose v is a unit in RG and that w is its inverse. Then v * w = 1gg and hence
Qv xw) = Q(1ge) = I, the identity matrix in M,(R). Thus Q(v) * Q(w) = I,,. Similarly
Q(w) * Q(v) = I,, and so (v) is invertible in M, (R).

Suppose now 2(v) is a unit in M, (R) and let B denote its inverse. Let v = ay,91 +
Qg G2 + - + g, gn. Then

Qg1 Xgryge Xgiggs -+ Ugyogn
Q(U) _ a92191 a92292 ag2393 e aangn
Xgnygr Xgnyga  Ygnggs -+ gngn

We do not know a priori that B is a RG - matrix. Let b = (51, fs,. .., ) be the first
row of B. Then

610'/91191 + BZO‘gzlgl + ...+ 5nagn191 = 1
ﬂla:thQQQ + BQOC:(]ngQ + : + 5n04:qn292 = O? (42>
ﬂlaglngn + ﬁQCngngn + e _|— 6n0égnngn = O

Now v = ag, g1+ gy 92 + - - - + g, Gn = Qg;,9, 95,91 + Qg;,9:95.92 + - - - + ;. 4,95, n, Tor each
tand j, 1 <t <nand 1 <j <n.
Define w = 5191—11 + ngfgl + -+ Bngl_nl. Then:
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/Bigj_il<aglgl + g, go + Qg gn) = Bigj_ilagjimgjigl + ﬁigj_ilagjigzgjigmL
4+ ﬂigj:.l&gjigngjign = B’L'Odgjiglgl + 5iagjig2.g2 +oeee ﬁia!}ji!]ngn-
Hence: v w = (Big;" + Pagr, +++ + Bugi. ) Qg g1 + gy g2 + - - + g, gn) equals to:

510@119191 + ﬁ204921g191 + ...+ ﬁnagnlmgl
+ 61a9129292 + 520‘9229292 + ...+ BnagnQQQQQ
+ ﬁlagmgngn + B2O‘gzngngn + ...+ ﬁnagnngngn

and this is g; from the above. Thus g; ' * w is the inverse of v and v is a unit in RG.
O

The next results are a direct result of the above and also extensions of the results found
in [51].
Corollary 4.0.10. If the inverse of an R(G, Hy, Ho, ..., H,2)- matriz exists then this in-

2
)
verse is also an R(G, Hy, Hs, ..., H,2)- matriz.
2

T

Corollary 4.0.11. When R is commutative, then the element v, is a unit in RG if and only
if Qv) is a unit in M, (R) if and only if det(2(v)) is a unit in R.

Corollary 4.0.12. Letv € RG. Then v is a zero divisor in RG if and only if Q(v) is a zero
divisor in M, (R).

Corollary 4.0.13. When R is commutative and has no zero-divisors, v is a zero divisor in
RG if and only if Q(v) is a zero divisor in M,(R) if and only if det(Q2(v)) = 0.

Theorem 4.0.14. When R is a field, v # 0 in RG is either a unit or a zero divisor,
depending on whether det(2(v)) # 0 or det(Q(v)) = 0.
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Chapter 5

Composite Matrices from Group
Rings, Composite G-Codes and
Constructions of Self-Dual Codes

In this chapter, we employ the matrix Q(v) from Chapter |4 and define a new family of
codes. Namely, we let the matrix Q(v) generate the codes over the ring R. We call this new
family of codes, composite group codes or for simplicity, composite G-codes. We show that
the codes we construct are ideals in the group ring RG and that the dual of a composite
G-code is also a composite G-code. We show that our code construction cannot produce
the putative [72,36,16] code. We also study self-orthogonal composite G-codes over finite
commutative Frobenius rings. Our new family of codes extends the idea of group codes
studied in [23] where the well-established isomorphism given in Equation is used to
study linear group codes with. In this chapter, we show that one can construct the same
class of group codes as in [23] and even more. That is, our technique allows one to construct
more codes that are held invariant under the action of the group G than the technique given
in [23].

We consider generator matrices of the form [I,, | Q(v)] and show when such generator
matrices produce self-dual codes over finite commutative Frobenius rings. We employ these
generator matrices and together with some well-known code constructions methods, we find
many new binary self-dual codes with parameters [68, 34, 12]. Our approach is similar to the
one from [39], where many new binary self-dual codes with parameters [68, 34, 12] are found
by considering generator matrices of the form [I, | o(v)], where o(v) is the matrix given
in Equation . Since our extended isomorphism allows one to construct more complex
n X n matrices over a ring R, it gives one more chances of obtaining more new codes via
these matrices. In fact, we show in this chapter that this is the case as we find many new

extremal binary self-dual codes of length 68.
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5.1 Composite G-codes

We now introduce the code construction.

For a given element v € RG and some groups H; of order r, we define the following code

over the ring R :

Cv) = {Q(v)),
where Q(v) is the composite matrix defined in Chapter |4, The code is formed by taking the

row space of Q(v) over the ring R. As in [23], the code C(v) is a linear code over the ring

(5.1)

R, since it is the row space of a generator matrix. It is not possible to determine the size of

the code immediately from the matrix.

22 I R ) _ 3 i
Examplel Let G = (z,y | 2 = 1,42 oY = a7 =2 Qs Letv =) o2t +
@iys5t'y € RQs, where o = ay, € R. Let Hy = (a,b | a®> =b* = 1,ab = ba) = Cy x Cy. We
now define the composite matriz as:
A A
1 2
Qv) = oA =
3 4
Qg Ayig, Qyigs Qgigy Qgigs Ayt Qytgr Qgrigs
B1((h)7 (1) Per((h)3 (h)2) Por((h)3 (h)s)  For((ha)y (ha)a) Qgrlgs Qgslge Aoyl Qg
B1((h)3 ) Yor((h)3 ()2) Fer((h)zt(ha)s) %((m;*(mm Qgitgs gyt gt Qg tgs
"‘m((h) (1)) YoM (h)2)  Yei((h)i ) P (()g (ha)a) Yoo Ayt Yortgr Qg tes
(Ytl a ay;'qz ag;'y.z ”t/;,'sm %g‘gs aqa g6 ay;'gv ”y;lys
Qgitgr gty Qg tgs Qg tga Qoa((h)3 (h)1) Yoa((h)7 (h)2)  Yoa((h)7 (h1)s)  Foa((h1)3 (ha)a)
af] 91 Ag-lgy Qglgs Qg-lgy Qos((h)3 ' (h1)1)  Ya((h)3 (h1)2)  Xou((h)3 ' (h1)s)  Noa((ha)3 ' (ha)s)
Qgi'ar Yi'gs Yi'gs Qg5 ga Sa((r)T (B Yoa((h)T (h1)2)  Yoa((h)T (ha)s)  Doa((ha)7 (ha)a)
where:
h h)i 25 gt
b - (h)i 25 g7, by (h1)i — 95 9;
1 4l

for i = {1,2,3,4}

in A} and Al respectively. This results in

for when {i =1,j =5,i=2,j=6,i=3,j="T,i=4,j =8},

a composite matriz over R of the following form:

a1 Qg (3 Oy | Oy Qg Q7 O8
Qy (1 O (3| (g Q5 Qg Q7
a3 Q4 Q1 Q9 | Oy Qg O5 Og
ay Q3 QO (1 | g Q7 «Ag QOf
Qa7 Qg Q5 Qg | O 04 Q3 Q9
ag Q7 QOg O | 0y Q1 Qo QO3
s Qg o7 Qg | 3 Qg (1 Oy
Qg Q5 (g Q7 | g (3 Q4 O
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If we let v = 2 + zy + 2%y + 23y € FoQs, where (x,y) = Qs, then

00010111
001 01O0T11
01001101
10001110
COI=QD =11 1 010100
11101000
01110001
10110010
and C(v) is equivalent to
10000111
01001011
00101101
00011110

Clearly C(v) = (Q(v)) is the [8,4,4] extended Hamming code.

In the above example, the group Cy x Cy was applied twice in two different blocks: A]
and A).

We now extend two results from [23]; we show that the codes constructed from the
composite matrices are also ideals in the group ring. We then show that the automorphism
group of such codes contains the group G as a subgroup.

Theorem 5.1.1. Let R be a finite commutative Frobenius ring, G a finite group of order n.
Let H; be finite groups of order r such that r is a factor of n with n > r and n,r # 1. Also,
let v € RG and C(v) = (Qv)) be the corresponding code in R". Define I(v) to be the set of
elements of RG such that > a;g; € I(v) if and only if (an, aa, ..., an) € C(v). Then I(v) is
a left ideal in RG.

Proof. We saw above that the rows of €(v) consist precisely of the vectors that correspond
to the elements of the form v} = > g, 0:95:9i In RG, where o, o, € R, g;,9;, € G and j is
the jth row of the matrix €2(v). We also know that some of the elements g;, equal to ¢;(h;)
for some map ¢; and the elements h; of H;. Let a = > «;g; and b = 5;9; be two elements
in I(v), then a +b = > (a; + f;)g; which corresponds to the sum of the corresponding
elements in C(v). This implies that I(v) is closed under addition.

Let wy = Y figi € RG. Then if wy corresponds to a vector in C(v), it is of the form
> 705 Then wywy = Y- Bigi ) Vv = Y Biy;9:v; which corresponds to an element in C(v)
and gives that the element is in I(v). Therefore I(v) is a left ideal of RG. O

Corollary 5.1.2. Let R be a finite commutative Frobenius ring and G a finite group of order
n. Let H; be finite groups of order r such that r is a factor of n withm > r and n,r # 1. Also,
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let v € RG and let C(v) = (Q(v)) be the corresponding code in R". Then the automorphism
group of C(v) has a subgroup isomorphic to the group G.

Proof. Since I(v) is an ideal in RG we have that I(v) is held invariant by the action of
the elements of the group G. It follows immediately that the automorphism group of C(v)
contains the group G as a subgroup. [

Similarly, as in [23], the codes constructed by the above technique are held invariant by
the action of the group G on the coordinates. We can therefore construct a code whose
automorphism group must contain the group G. Moreover, in our construction, we apply
groups of order r and the bijective maps ¢; in individual blocks to determine the permutation
of the coordinates in each row of a code. For this reason, we refer to a code constructed by
the above technique as a composite G-code.

An open problem in the classical coding theory is to establish the existence or non-
existence of a binary self-dual code with parameters [72, 36, 16]. So far, in the existing liter-
ature, no such code was constructed or was proved not to exist. Researchers have however
studied the algebraic structure of some of the constructions to show that from certain gener-
ator matrices over certain alphabets (finite fields and rings), the binary self-dual code with
parameters [72, 36, 16] can not be obtained. Please see [23] for more details. We now also
show that one can not produce such code with our technique.

Corollary 5.1.3. The putative [72,36, 16] code cannot be of the form C(v) = (2(v)) for any
v € oG for any group G.

Proof. 1t is well known that the automorphism group of a putative [72,36, 16] code must
have order less than or equal to 5 (see [23] for details). If it were of this construction, some
group of order 72 would have to be in its automorphism group. Therefore, the code cannot

be formed from this construction. O]

We finish this section with one more result which is a generalization of the result from
[23]. We show that if C is a composite G-code for some G then its orthogonal C* is also a
composite G-code.

Let I be an ideal in a group ring RG. Define R(C) = {w | vw = 0, Yv € I}. It is
immediate that R(/) is an ideal of RG.

Let v = ag, g1 + ag92 + - - - + ay,gn € RG and C(v) be the corresponding code. Let U :
RG — R™ be the canonical map that sends ay, g1 + g, g2+ - - + @, G t0 (g, gy - - -, Oty ).
Let I be the ideal ¥~1(C). Let w = (wy, wy, ..., w,) € C*. Then

[(Qg; 015 Qg gon - - -5 Qg ga)s (W1, Way - wy )] =0, V7, (5.2)
where g;, € G. This gives that

> ag, gwi =0, Vi (5.3)
=0
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Let w = U1 (w) = Y w,,¢; and define W € RG to be W = by, g1 + bgg2 + -+ + by,

where

by, = w,-1. (5.4)
Then
Z g, Wi =0 = Za%giby-’l = 0. (5.5)
i=1 i=1

Here g;,g:9; ' = g;,, hence this is the the coefficient of gj, in the product of W and vy
This gives that w € R([) if and only if w € C*.

Let ¢ : R — RG by ¢(w) = W. It is clear that ¢ is a bijection between Ct and
R(T7HC)).

Theorem 5.1.4. Let C = C(v) be a code in RG formed from the vector v € RG. Then
U-L(CL) is an ideal of RG.

Proof. We have that U(¢(Ct)) is permutation equivalent to C+ and ¢(C*) is an ideal and
so U1(C) is an ideal as well. O

5.2 Self-Orthogonal Composite G-codes

In this section, we show that the map 2 : RG — M,,(R) is an injective ring homomorphism,
we show when our construction C = (€2(v)) produces a self-orthogonal code and also when
it produces a self-dual code.

Before we look at the theoretical results, we define the composite matrix 2(v) that we
defined in the the previous section, in a different but equivalent form. Namely, let

-1 -1 -1 -1
Oégll g1 Oégl2 g2 a913 g3 Oégln gn
o —1 o -1 o -1 o -1
9o, 91 9o, 92 9o, 93 9o, g
Q(U) — 2.1 22 2.3 2n I ,
agﬁf!ﬂ Oég;; 92 0497731 g3 " Oégiﬁ 9n

where gj_il are simply the elements of the group G. These elements are determined by how
the matrix has been partitioned, what groups H; of order r have been employed and how
the maps ¢; have been defined to form the composite matrix. This representation of the

composite matrix €2(v) will make it easier to prove the upcoming results.

Theorem 5.2.1. Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n with n > 1 and n,r # 1. Then the
map Q : RG — M,(R) is an injective ring homomorphism.
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Proof. We need to show that the map () preserves addition and multiplication. Let R be
a finite commutative Frobenius ring, G be a group of order n and H; be finite groups of
order r such that r is a factor of n with n > 1 and n,r # 1. Now define the mapping
Q: RG — M, (R) as follows. Suppose v =" | ay,¢;. Then

Yoilar Yor)er Yor)es Y1, om
o -1 o -1 o —1 o —1
99, 91 92, 92 93, 93 95, 9
Qo) = | 7 R o
agﬁllm Oégn}l g2 O‘gn}l g3 O‘gﬁﬁgn

! are simply the elements of the group G in some order. This order is determined

where g
by how the matrix has been partitioned, what groups H; of order r have been employed
and how the maps ¢; have been defined to form the composite matrix 2(v). This mapping
is clearly injective. We now show that €2 is additive and multiplicative. Let w =Y | B9

then,

(CY + 5>gfllg1 (Oé 6)9;2192 (Of + /B)g;;gg vt (CY + 5)g;nlgn
U+ ) = o ' gl (@ F é)gg—;g? (o + 5)92—3193 - (o + é)g;;gn _
(a + ﬁ)gﬁllm (a + ﬁ)9772192 (a + 5)953193 T (a + B)gﬁﬁgn
Yl Yoo Yot o Yoplow 591’1191 Bgf;gz 5gf3193 o Poilgn
_ | Yte Yo)e Yole 0 Pgylen " B 95, 91 B 9o, 92 B g0 Yolen | _
Agolgr Qgilgy Qgrlgs -+ Qgrlg, 5951191 ﬁg@lgz 5953193 e Bgﬁign
= Q(v) + Qw).

Thus addition is preserved. Next, suppose v * w = t, where t = """ | 7,.¢;. Then

Tortor Yor)or VorJos - Toplon
Y1 Y, Yo 1. e Yt
Q('U) % Q(w) — 92'1 g1 92'2 92 92'3 g3 ' gz.n gn — Q(’U % w)
79771191 797721 92 ’79531 g3 7977,1 9n
Thus, multiplication is preserved. This concludes the proof. O

For an element v = >_ a;g; € RG, define the element v* € RG as v’ = Y a;g;*. This is

sometimes known as the canonical involution for the group ring.
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Lemma 5.2.2. Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n withn > 1 and n,r # 1. Then for
an element v € RG, we have that Q(v)T = Q(v7).

a -1 which is the ji-th element of

Proof. The ij-th elements of Q(v?) is Yo lgi)t T Yot

Q(v). O

Lemma 5.2.3. Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n withn > 1 and n,r # 1. If v = vT
and v? = 0 then C, is a self-orthogonal code.

Proof. If v = vT then Q(v)” = Q(v”) by Lemma[5.2.2] Then we have that (Q(v)Q(v));; is
the inner-product of the i-th and j-th rows of Q(v). Since v*> = 0, by Theorem 4.1 we have
that Q(v)Q(v) = 0. This gives that any two rows of Q(v) are orthogonal and hence they
generate a self-orthogonal code. O]

Theorem 5.2.4. Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n with n > 1 and n,r # 1. Let v be
an element in RG. If v =" v* =0, and |C,| = |R?| then C, is a self-dual code.

Proof. By Lemma the code C, is self-orthogonal and since |C,| = |R2|, we have that
C, is self-dual. O

5.3 Generator matrices of the form [/, | Q(v)]

In this section, we consider generator matrices of the form [I,, | ©(v)] to construct extremal
binary self-dual codes. We show when such generator matrices produce self-dual codes. Be-
fore the theoretical results, we give a motivating example in which we compare the generator

matrix of the form [I,, | o(v)] with a generator matrix of the form [I,, | Q2(v)].

Example 5.3.1. Let G = (z,y | 2 = y?> = 1,2¥ = 27 ') = Dsg. Also let

701
iy

v = E a1yiygj0'Yy’ € FoDyg,

i=0 j=0

A B
o(v) = (BT AT) ,

where A = C?;TC(Oél, Qg, (3, Oy, 05, O, (X7, Oég), B = C?:TC(OZQ, a9, 011, (12, (13, (14, 5, alG) a’nd

then

a; € Fy. We now employ the generator matriz of the form [I1g | o(v)] to search for binary

self-dual codes with parameters [32,16,8]. We summarise the results in a table.
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First row of B
(0,0,0,1,1,1,1,1)
(0,1,0,1,1,1,1,1)
(0,0,0,1,0,0,1,1)

First row of A
(0,0,0,0,0,1,0,1)
(0,0,0,0,0,1,1,1)
(0,0,0,0,1,1,1,1)

| Aut (Cy)|
21.32.5.7
215 ‘32
-3-95-31

C; Type
Cy I1
Csy I
Cs I1

25

Example 5.3.2. We now amend o(v) from the previous example by forming a composite

matriv. Let G = (v,y | 2% =y = 1,a¥ = 27") = Dig and v = 3.1, Z;:O Q1 4irsi Y

FyDig. Also let Hy = {(a,b | a®> =b* = 1,ab = ba) = Cy x Cy and Hy = {c,d | ¢* = d® = ¢? =
¢ 1) = Dg. Now we define the composite matrix as:
/ !/
aw = (1 ),
AL A
3 4
where
Qg Qglgy Qglgs Qgrlgy Qglgs Qgrlgs Qgrlg, QXgilgs
()7 (B Yor((h)3 (h)2) Por ()7 (h)s)  Xen ()T (h)a)  Yor((h)7 (h)s) Dor((h)7t (h)s)  Yen((h)F (ha)r)  Yer((h)3 ! (h1)s)
%((h) (1) Yor((h)zt(h)2) Ypr ()5 (h)s)  Xen ()3 ()a)  Yor((h)zt(h)s) Dor((h)zt(h)s)  Yen((h)7 (ha)r) V()3 (ha)s)
A = | Fei Y Qo) n)2) Qo) ()s) Yo ) Yea ()7 (m)s) Yen((h)N(h)e)  Xen((ha)i(h)7) Yo ((ha)i (ha)s)
Qo1 ((h)5 (h)1) - Xon((h)7 (h1)2) Yon((r)7 (h1)3) Yor((h)5 (h)a)  Yon((h)F (ha)s)  Yor((h)7 (h)e)  Dor ()5 (h)7) X ((h1)5 (ha)s)
%((hnﬁl( r)D) - Yor((h)g (h)2) Xon((h)g (hn)s)  Yor((h)gt(h)a)  Dor((h)g (h)s)  Pen((h)g (ha)e)  Yor((h)gt(h)r)  Dor((h)gt (n)s)
17 (b)) Yon ()7 (h)2) Xer ()7 (h1)s)  Por((h)7 (h)a) Por((h)7 ()s) Dor((h)Tm)s)  Yor((h)T()7) Den((h1)7(h)s)
Qo1 ()5 (h)1) - Xon((h)F (hn)2)  Yon ()3 (h1)3)  Dor((h)gt (h)a) Yon((h)g (ha)s)  Yon((h) (h)e)  Yor((h)g (h)7) X ((h1)5 (ha)s)
Qgilgg Qg1 Qgrtgn Qi Qi Ayl Qgrlgs 0‘0{‘!}15
$2((h1)5 ' (h1)1) B2((h1)y  (h)2)  Ya((h1); (h1)s)  Noa((h1)z ' (h1)a)  Pga((h)3(h1)s)  Dga((h)y (h)e)  Vea((hn)y ' (h)7)  Ya((h1)y ' (h)s)
Qoa((h)z (h)1) Fa((h)5 (h1)2)  Yoa((h)z ' (h1)s)  Doa((h)z (h))  Pa((hn)5 (hn)s)  Yea((h)3 " (h1)e) %(( )5 1)) Yga((h )J( 1)8)
Ay = | o@i ey Tt m) Yea@i ()s) - Feat)ita) ea(@)i )s) Foa(t)it (o) Vea()5 )n) Foa((hn)i (h)s)
Qo ((h1)5 ™ (hn)1) % ((h)5 (h1)2) Xpa((h)5 (h1)s) Xea((h)F ()a)  Doa((h)5 (h)s) Doa((h)5 ' (h)s)  Yoa((h)7 (ha)r)  Yea((h)7" (h1)s)
Qoo ((h)g (h)1) Pa((h)g (hn)2)  Yoa((h)g (h1)s)  Doa((h)g (h))  Poa((hn)g (h)s)  Yea((h)g " (h1)e) %7« h)g (ha)7) Qéa((ha)gt (hn)s)
Qo ((h1)7 1 (h)1) %((hnmhlm Qga((h)71(h)3)  Foa((h)7(h)a)  Vga((h1)7'(m)s)  Vea((h1)7 ' (h1)e)  Xoa((h1)7 ' (h1)7)  Yoa((h1)7 ! (h1)s)
Qoo ((h)5 (h)1) Xa((h)F (h1)2)  Yoa((h)F (h1)3)  Voa((h)g ' (h)a)  Ya((h)g (ha)s)  Voa((h)F (h1)e)  Doa((h)5 (h)7)  Xoa((h1)5 (h)s)
Qglgy Qgolgy Qgolgs Qgolgs Qgtgs Qglgs Qylgr Qgolgs
Qs((ha)7 ' (h2)1)  Va((h2)7 ' (h2)2)  Nos((ha)7 ' (h2)s)  Nos((ha)y'(h2)a)  Pea((ha)y'(h2)s)  PYas((ha)y ' (ha)e)  Xos((h)7'(ha)r)  Noa((ha)3 " (h2)s)
Qps((h2)3  (h2)1) P3((h2)3  (h2)2)  Ngs((ha)yt(ha)s)  Yos((h2)3(h2)a)  Dos((ha);t(h)s)  Ps((h2)zt(h2)s)  Yos((ha)s (h2)r)  Dés((ha)y (ha)s)
Ay = | Yo )) Fos()itBa)2) Yos((h)i (2)a) Foa((a)it () Vaa((h)i (2)s)  Foa((ha)it(hade)  Vea((h)i (2)r) Pon((h2)i (ha)s)
Qg ((h2)5 ' (h2)1) %a (h2)5(h2)2)  Yoa((h2)5 ' (ha)s)  Xes((h2)3 ' (h2)a)  Vos((h2)5 ' (h2)s)  Vs((ha)5 ' (h2)s)  Yos((h2)5'(ha)r)  Ves((h2)7 " (h2)s)
Qs((ha)g (h2)1)  Xos((h2)g ' (h2)2)  Vos((h2)g'(h2)s)  Noa((ha)gt(ha)s)  Xos((ha)g'(ha)s)  Vos((ha)g(h2)e)  Noa((ha)gt(ha)r)  Xos((h2)g (ha)s)
Qg ((h2)7 (h2)1) "m((hzwhz)z) Qga((h2)7 (h2)s)  Ns((ha)7'(h2)a)  Va((h2)7'(h2)s)  Nes((ha)7'(ho)e)  Yes((ha)7'(h2)7)  Pos((h2)7 " (ha)s)
Da((ha)g " (h2)1)  Xos((h2)5 ' (h2)2)  Vos((h2)3'(h2)s)  Voa((ha)g'(h2)))  Xos((ha)g'(ha)s)  Vos((h2)3'(h2)e)  Voa((ha)g' (h2)7)  Xos((h2)3 (ha)s)
Qgolgy Qg1 Qgoton Aot Qgotgs Qglgis Qglgrs Qylgis
#a((h2)3 ' (h2)1) %((}'2)2 (h2)2)  Ypa((h2)7 (h2)s)  Poa((h)7'(ha)a)  Ppa((h2)3'(h2)s)  Noa((h2)7'(ha)s)  Noa((h1)3'(h2)7)  Da((h2)7 " (h2)s)
Qg((h2)y  (h2)1) Ba((h2);  (h2)2)  Ypa((h2); ' (h2)s)  Nou((ha)y (h2)a)  Noa((ho)i (h2)s)  Veba((ha); (h2)o) a¢>4((h25 (h2)7)  Ya((h2); " (ho)s)
A= Qga((h2)7 ' (h2)1) %4<<h> (h2)2)  Ya((h2)i (h2)s)  Doa((ha)y (h2)a)  PYéa((h2)i(h2)s)  Yoa((ha)i'(h2)e)  Fpa((ha)i (h2)r)  Yoa((h2);(h2)s)
#a((h2)5 ' (h2)1) %A«},Q) Yha)a)  Xoa((h2)7'(h2)s)  Voa((ha)3'(h2)e)  Doa((h2)5'(h2)s)  Voa((h2)5 ' (h2)e)  Yea((h2)5 ' (ha)7)  Poa((h2)5 ! (ha)s)
$a((h2)g ' (ha)1) Ba((h2)g  (h2)2)  Ypa((ha)g (h2)s)  Youa((ha)g (h2)a)  Poa((ha)g (h2)s)  Noa((ha)g (ha)e)  Voal(ha)g (ha)r)  Va((ha)g ' (ho)s)
Qpa((h2)7 (h2)1)  Voa((h2)7'(h2)2)  Voa((h2)7'(h2)s)  NXeu((h2)7'(h2)1)  Xou((h2)7'(h2)s)  Yu((ha)7'(ha)e)  Xpa((ha)7'(h2)7)  Npa((h2)7 ! (h2)s)
$a((h2)g ' (ha)1) Ba((h2)g ' (h2)2)  Ypa((ha)g t(h2)s)  You((ha)s'(h2)a)  Nga((ha)s (h2)s)  Noa((ha)s(ha)e)  Voa((h2)g'(h2)r)  Va((ha)g ' (ha)s)

and where:
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(h1)s —>91 'gi (h1)i —>91 'g;

o1 for i ={1,2,...,8} 02 for when i = {9,10,...,16}
b - (ha)i 2 951 b (ha)i 2 g5 1
5 fori ={1,2,...,8} t for when i = {9,10,...,16}.

This results in a composite matriz of the following form:

A, B, | Ay B,

Q(U) _ Bl A1 Bg AQ ’
A3 B3| Ay By
BT AT | BT AT
where

Ay = cire(ar, g, as, ay),

By = cire(as, ag, a7, ag),

Ay = circ(ag, agp, 0q1, a2),

By = circ(ags, ong, s, ),

Ag = Ci?"C(O&g, 16, (15, Oé14)

Bg = C’iTC(()élg, 19, (1, Oéw)

Ay = cire(ay, as, ar, ag),

By = circe(as, oy, as, as)

and where a; € Fy. We now employ the generator matriz of the form (I | 2(v)] to search
for binary self-dual codes with parameters [32,16,8]. We summarise the results in a table.

Ci TYPQ A, By T4, "By T'As "'Bs TAy "By ‘ Aut (CZ) |
¢, 1 (0,0,1,0) (0,0,1,0) (0,0,1,0) (1,1,1,1) (0,1,1,1) (1,0,1,0) (0,0,1,0) (0,0,1,0) 2°-3%-5

The order of the automorphism group of the code obtained in Example is different
from the order of automorphism of codes obtained in Example [5.3.1 This shows that the
composite matrices can be used to produce codes whose structure is not attainable from
matrices of the form [[,, | o(v)] or other classical techniques for producing extremal binary
self-dual codes. In fact, this is the main motivating factor for this construction, that is, we
construct codes whose automorphism group differs from other constructions which means
we find codes that are inaccessible from other techniques.

Theorem 5.3.1. Let R be a finite commutative Frobenius ring, G be a group of order n and
H; be finite groups of order r such that r is a factor of n withn > 1 andn,r # 1. Letv € RG

69



and let Q(v) be the corresponding composite matriz over R. The matrix G = [I,, | Q(v)]
generates a self-dual code C over R if and only if Q(v)Q(v)T = —1,.

Proof. The code C is self-dual if and only if GG is the zero matrix over R. Now,

GG = [I, | QW)|[I, | Q)" = [I | Qv)Q(v)"].
Thus, GGT is the zero matrix over R if and only if Q(v)Q(v)? = —1,,. O

We note that the connection defined in Equation extends to the map 2. We also
saw earlier in the work that Q(v) = Q(v)T. Now using Theorem the fact that Q is
a ring homomorphism, and the fact that Q(v) = —1I,, if and only if v = —1, we get the
following corollary.

Corollary 5.3.2. Let R be a finite commutative Frobenius ring, G be a group of order n
and H; be finite groups of order r such that r is a factor of n with n > 1 and n,r # 1. Let
v € RG and let Q(v) be the corresponding composite matriz over R. The matriz [I,, | Q(v)]
generates a self-dual code over R if and only if vv* = —1. In particular v has to be a unit.

When we consider a ring of characteristic 2, we have —I, = I,, which leads to the

following further important result:

Corollary 5.3.3. Let R be a finite commutative Frobenius ring of characteristic 2, G be a
group of order n and H; be finite groups of order r such that r is a factor of n with n > 1
and n,r # 1. Let v € RG and let Q(v) be the corresponding composite matriz over R. Then
the matriz I, | Q(v)] generates a self-dual code over R if and only if v satisfies vv* = 1,

namely v s a unitary unit in RG.

5.3.1 New Extremal Self-Dual Binary Codes of Length 68

In this section, we search for extremal binary self-dual codes of length 68 using the generator
matrix described in the previous section with some other well-known techniques. We now
describe our approach.

We apply the generator matrix of the form [I | Q(v)] over the ring Fy + ulF4 to find
extremal self-dual codes whose binary images are the extremal self-dual binary codes of
length 64. We then apply Theorem [9 to obtain codes of length 68. We next apply the
i'"-range neighbour method described in Definition 33| to find a family of neighbours which
turn out to be extremal self-dual binary codes of length 68 with parameters not known in
the literature before. In particular we find new codes of length 68 with the rare parameters
of v=17,8,09.
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The Generator Matrix

We now define the generator matrix of the form [/, | Q(v)] which we then employ to search
for self-dual codes over the ring Fy + uF4. Of course, I, is simply the identity matrix so we
define Q(v).

Let G = (z,y |z =y*=1,2¢ =27') 2 Dg. Let v = a1 + 0, + @22? + apa® + a,y +
Uy TY + 2,82y + 3, 2%y € RDg, where oy, € R. Let Hy = {(a,b | a®* = b* = 1,ab = ba) =
Cy x Cy and Hy = (c | ¢* = 1) = C;. We now define Q(v) as

/ /
Q(U) — Al AQ —
AL A
3 4
Qg Ayig Qgrlgs Qgiigy Qgitgs Qyigs Qg Qgilgs
#1((h2)7(h2)1)  Yor1((h2)7 (h2)2)  Xon((ha)7 ' (ha)s)  Ven((h2)77(h2)a) | Fa((h)7'(h)1)  PFoa((h1)3 ' (h1)2)  Pa((h1)7'(h)s)  Ma((hn)3 " (k1))
A1((h2)3 " (h2)1)  Yor((h2)7 (h2)2)  Yor(ha)7 (h2)s)  Dor((ha)3 (h2)a) %«m;l(mm Qoo((h)z (h)2)  Yoa((h)z (h1)s)  Xoa((h1)3 (h1)a)
Qo1 ((ha); (h2)1)  Qor((ha); (h2)2)  Yon(ha)it(h)s)  Xon((ha)i'(h2)e) | Pa((h)i'(h))  Yoo((h)i'(h)a)  Yoa((h)i(h)s)  Yen((h)yt(h1)a)
ayg 9N (‘Yq;'t/z aqi'gz ”y;lya G 'gs aq:'yb ag;, g7 O(yglgs 7
Qos((h)3 (h)1)  Voa((h)3 (h)2)  Yos((h)7 (h1)s)  Fos((h1)3 " (ha)a) %4«}“)2 (1) Yoa((h)7 (h1)2)  Ypa((h)7 (h)s)  Doa((hn)3 (hn)a)
Qgg((h)3 (h)1) Ppa((h)z (h1)2)  Pa(h)z (h)s)  Dos((h)3 ' (h)a) | Ppa((h)3 ' (h)1)  Xeu((ha)z (h1)2)  Noa((h1)3 ' (h)s)  Ppa((hn)z " (h1)a)
Qg (b7 (h)1)  Pps((h)7 (h1)2)  Pps(h)T (h)s)  Yos((h)T (h)a) | Ppa((h)T (h)1)  Yoa((h)7 (h1)2)  Yoa((h)T'(h)s)  Ppa((h)7" (ha)a)

where:
& _
by - (h2)s o, 91 ' gi by (h1)i = g1 19]’ ’
- fori=1{1,2,3,4} " forwhen {i=1,j=5,i=2,j=6,i=3,j="7,i=4,j =8}
& _
03 (h1)i _> 95 'gi b : (h1): = Js 19]‘

for i ={1,2,3,4} forwhen {i=1,j=5,i=2,7=6,i=3,j=7,1=4,j =8} '

in A}, A, A, and A)). This results in a composite matrix over R of the following form:

aq Ol Q2 Qs Qry gy Qg2y Qg
Ol fe%] Qg3 Qg2 | Oy Qo Qusy Qg2
Qg3 Qg2 o Oz | Qz2y  Qusy  Q gy
Q(U) _ Q2 Qg3 (7% (071 Qgdy g2y Qgy Qy (5 6)
Qy Oy Qg2y Qg ay Qg3 Qg2 o7
Qzdy Oy Ozy  Olg2y | Qg3 e %1 Qe Q2
g2y gy Qy  Olgdy | Qg2 Oy aq O3
Qgy  Qz2y  Qgdy  Qy Ol Q2 Qs aq

Therefore, the final form of the generator matrix which we later employ to search for

self-dual codes has the following form:

[Ln | 2(v)], (5.7)
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where )(v) is the composite matrix defined in ([5.6)).

Computational Results

We now employ the generator matrix defined in Equation over the ring F, + ulF, to
search for codes of length 16 whose binary images are the extremal self-dual codes of length
64. In fact, we only list one of the codes found. Since the matrix Q(v) in Equation (/5.7)
is fully defined by the first row, we only list the elements that appear in this row. This
code is listed in Table This code in turn is used to find new extremal binary self-dual
codes of length 68. All the upcoming computational results were obtained by performing
the searches using MAGMA ([4]).

Table 5.1: Type I Codes of length 64 and their § values
Ci (O./l, Qg Qg2 Qg3 Qlyyy Oy s Qig2q), Ozx:sy) ‘AUt(Cz)‘ W64,2
1 (0,w,u+1,u+1,u,wu+uwwu+u+1) 24 B=0

We now apply Theorem [J] to the ¢r, r,- image of the code in Table 5.1} As a result,
we were able to find many extremal self-dual codes of length 68 but to save space, we only
list one. This code is found in Table [5.2] where 1+ u in Fy + ulFy, is denoted by 3.

Table 5.2: Type I Codes of length 68 from Theorem [J]
CGS,'L Ci c X v B
Cisi C1 1 (0,3,3,4,3,1,3,3,3,3,1,1,0,3,3,1,3,1,0,u,1,3,4,3,0,1,3,1,3,0,3,1) 4 103

The order of the automorphism group of the code in Table is 2. We note that the
code from Table has parameters that are not new in the literature.

We now apply the i* range neighbour formula to the code obtained in Table . We
set the first 34 entries of = to be 0, the rest of the vectors are listed in Tables [5.3] and [5.4]

Let Ny = C where C is the extremal binary self dual code of length 68 with parameters
=103 and v = 4. Applying the *" range formula, we obtain:
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Table 5.3: " neighbour of N

’ i ‘Miﬂ) ‘ Li v B ‘
0 | My | (1111011010011101111111100100111110) 4 101
1 | Mg |(0110100100111101111011111110111011) 6 145
2 | N | (0000100000010000011101110110000101) 7 152
3 | N | (1111111100000010000111001100101011) 7 143
4 | Ny | (0110010010100110110111101011111111) 8 162
5| Ng | (1100001011011111001111110010001011) 9 174
6 | N | (1110010010100011111100101110001100) 9 167
7 | N | (0011000000000110110101001101100000) 9 159
8 | Mo | (1001101110001110110000111101000011) 9 158
9 | Nuoy | (1001011111100101110001001011110110) 9 157
10 | Ny | (1010101101101101110111011111111010) 9 152
11 | Naug | (1111010110110000110111011010101010) 7 131
12 | Nagy | (1000011111111011110110001010110010) 6 117

We shall now separately consider the neighbours of M7y, My, N(10), N(11), Na2y and Nyg).
We tabulate the results below. All the codes in Tables [5.3] and [5.4 have an automorphism
group of order 1.

Table 5.4: New codes of length 68 as neighbours

Mo | Mi (235, %36, ---, Tes) 7B [ Noy [ M, (w35, T36, ---, Tes) v B
7 (0001000010111101010000011101000110) 7 141 7 (0100101001111001101010101010101110) 8 150
7 (0111001010000000100011000001011100) 8 151 7 (1001100101100110101111100011101101) 8 152
7 (0011100111101011010101111011100100) 9 164 | 7 (1000000010011000001010001011010011) 9 165
7 (0010010111100000100111110000000000) 9 166 | 7 (0010101001010010101010100000000011) 9 168
7 (1000101001011010000100100100010010) 9 170 | 7 (0110110001000000000110000010011110) 9 172

/\/(i) M; (135, L36, -+ Ies) Y B -/\f(z') M; (1357 L36, -+ Iﬁs) v B
8 (0111100101101011111001111110111101) 7 134 | 8 (1000001110101000000101110110100010) 7 135
8 (1111010110000000111001101001000000) 7 136 | 8 (1111000111011000110111001101111110) 7 137
8 (0010000011001100110010010001100001) 7 138 | 8 (1111001001110111001001100101001100) 7 139
8 (1011011001100110111011100100011000) 8 144 | 8 (1111101110010110001101111111010010) 8 147
8 (0011000110101010001011010101100101) 8 148 | 8 (0110110000000110010110011110100110) 8 149
8 (0001101100111000101110011001001001) 9 160 | 8 (1000001000111101010110000101010001) 9 161
8 (1110100010110010110000010010000101) 9 162 | 8 (0100011010001111001111101001011111) 9 163

Mi) M; (1'357 L3655 Iﬁs) Y B Mi) M; (135«, L3655 be) o o)
10 (1101100111000110001101001101111000) 7 132 | 10 (1111000110101101101011011011000011) 8 143
10 (1110110011011110001010110001101011) 8 145 | 10 (0010111101110011010001011100111110) 8 146
10 (1011010011010100010100010010111010) 9 156
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-/\/('i) M; (-75357 L36, - -Tﬁs) B B /\/(i) M; (-7?357 L36, -5 -TGS) Y &)
11 (0101000101100110011001011000111100) 8 139 | 11 (1011111100100001110111000101111100) 8 140
11 (1100011001000111000000110111010110) 8 141 | 11 (1101111110110100001101111111011101) 9 151
11 (0001100111110011010110111001111010) 9 154 | 11 (0100100111101001001010101111000001) 9 155

Ny | M (@35, T36, ---, Tes) voB | Ny | M (@35, T36, .- Tes) vy B
12 (1100011100101100111101111001101100) 6 121 | 12 (1111100111100011111001011110101111) 6 123
12 (0001101000001011101010000001100001) 6 124 | 12

/\/(i) M; (135, L3655 %8) Y B Mi) M, (1357 T365 -5 1‘68) Y B
13 (0101110011001101000001001000001000) 5 110 | 13 (1011011100110111011001011010101001) 6 120
13 (1000111010010011011000110000101011) 6 122 | 13

68 with new weight enumerators for the rare parameters v = 7,8 and 9.
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Chapter 6

Composite Constructions of Self-Dual
Codes from Group Rings and New
Extremal Self-Dual Binary Codes of
length 68

In this chapter, we employ our extended isomorphism from Chapter [4| to construct binary
self-dual [68, 34, 12] codes with parameters in their weight enumerators that were not known
in the literature before. In particular, we define two composite constructions with the use of
groups of orders 8 and 4 and use these composite matrices to form two generator matrices.
We next give the necessary conditions that each generator matrix has to meet in order to
produce a self-dual code over a finite commutative Frobenius ring of characteristic 2. We
finally, together with the generator matrices, the extension and neighbour methods search
for binary self-dual codes with parameters [68,34,12]. As a result, we obtain 13 such codes
with parameters in their weight enumerators that are new. Our approach here is similar to
the one given in the previous chapter, but this time, we consider more groups of orders 8 and
4 to define the composite matrices and then the generator matrices with. The technique
of employing the composite matrices defined in Chapter 4 to search for binary self-dual
codes with is very recent and not much literature exists where this technique is employed.
One can see [20] where this idea, with groups of order 16 and 8, is used to construct new
extremal binary self-dual codes of length 68 with. We believe that the composite matrices
defined earlier in this work will find many applications in coding theory and in particular in
constructing new binary self-dual codes of different lengths. This chapter is joint work and
the results are published in [19].
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6.1 Generator Matrices

In this section, we define two composite matrices using the matrix construction presented
in Chapter [l We then use these composite matrices to form two generator matrices with.
We next show under what conditions the generator matrices produce self-dual codes over a
finite commutative Frobenius ring.

Let G = (z]|a®=1)2Cg. Letv, = 30, Z;:o Qitaj+12°77 € RCs, where a; = oy, € R.
Let Hy = {a,b | a*> =1? = 1,ab = ba) = Cy x Cy. We now define the composite matrix over
R as

/ /
@) = (41 ) =
AL AL
Qyrtgy Qyrlg Qglgs Qglgy Qglgs Qgrlgg Qgrlgy Qglgs
Qi((h)7 (h)1)  Yea((h1)7 " (hn)2) %u«hl)*‘( h)s) Q)3 (h)a) oz«hu)z‘uml) Qo ((h1)5 " (hn)2) %«h) (h)3)  Xea((h1)3 (h1)a)
01((h1) Y Qou((h h1); " (h1)2) é1((h1)3 " (h1)s) aOi((hl)Ql(hl)O 62((h1)5 " (h1)1) 02((h1) (h1)2) 62((h1)3 " (h1)s) 62((h1)5 " (h1)a)
_ o ((h)7 ' (h)D)  Yer((h)7 (h1)2) Yo () (h)s)  Yr((h) (h)a) | Yea((h)i (ha)1)  Pga((h)i(ha)2)  Ya((h1)gt(h1)s) $2((h1); " (h1)a)
R Qs g Qg tgs Aoz lga Qglgs Ayl Qgtgr Qglge
Cog((h)z () Dos((h)3 (h1)2)  Doa((ha)3 (h)s)  Yos((h)z (h)a) | Foa((h)z (h))  Poa((h)z(h1)2)  Poa((h)z (h1)s)  Dou((ha)y " (h1)a)
o)z (1) o)z h)2) Vos()gt (h)e) Poa(()z (h0)a) | Qg (h)) Voalh)z (h)s) Coa((h)y h)s)  Voa((ha)g (b))
Qs((h); ' (h)1) Dgs((h)g (h1)2)  Yos((hn)y (hn)s) Yos((h)i ' (h)a) | Da((h)it(h)1)  Dga((ha)i (ha)2)  Ya((ha); (ha)s)  Yoa((ha)y (h)a)

where:
[ _
b (h1)i 25 g7, b (h1)i = g1'gj
- fori={1,2,3,4} " forwhen {i=1,j=5,i=2,j=6,1i=3,j="7,i=4,j =8}
b (h); 2 g5 g, by (h)i 2 9519

for i = {1,2,3,4} for when {i =1, =5,i=2,7=6,i=3,j="7,i=4,j =8}

This results in a composite matrix over R of the following form:

Qa1 Q9 Q3 Q4 | 05 Qg Q7 O

Qg Q1 O4 O3 | g Q5 ag Q7

X1 1| Xe Y a3 Q4 Q1 Qo | ar Qg Q5 Qg

Q(v1) i X1 | Yo X . Qg Q3 Q@ @ | g Qy Qg Qs
1) = =

X3 Y3 | Xy Y Qg Qa5 Qg Q7 | 01 Oy Q3 04

Y X3 | Y1 Xy as g Qr Q| Qg Q] Qg Q3

Qg Q7 Qg Q5 | 3 Q4 01 Qg

Q7 Qg Q5 Qg | Oy Q3 Q2 Q1
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Theorem 31. Let R be a finite commutative Frobenius ring of characteristic 2. Then the

matrix

G= ks | Q)=

Ay By Ay By
Is | B1 A1 By Ay
A3 By A By
By As B A4

(6.1)

where Ay = circ(ay, ag), By = circ(as,ay), Ay = circ(as, ag), Bs = circ(ar, ag), Az =

circ(ag, as) and Bs = circ(ag, ar) generates a self-dual code C over R, if and only if the

following equations hold:

Proof. The code C is self-dual if and only if GGT is the zero matrix over R. Let

we have to show that X X7 = I5. Now,

A By
By A
As Bs
Bs A;

XXT =

where

1

Xo =

3 =

As By
By Ay
A1 By
By A

A? + A2+ B} + B3
2A,B; + 24,8,

A1As + A1As + B1 By + B1 B3
A1By + Ay By + A1Bs + A3 By

A3+ A3+ B} + B;
214131 -+ 2A383

Ay By
By A
Az Bs
Bs Az

Ay By
By Ay
As By
By Ay

A% + A} + B} + B; = I,
AjAs + AyAs + BiBy + BBy = 0,
A1By + AyBy + A1Bs + A3 By = 0,

A3+ A2+ B+ B; = I,.

Ay By
By A,
A By |’
By Ay

Az Bs
B Aj
Ay By
By A,

2AlBl + QAQBQ
A%+ A2+ B} + B;

2A,B; + 2A3B;
A2+ A2+ B + B?

A1B2 + AQBl + A1B3 + AgBl
A1Ay + A1As + B1By + BB

This will equal to Ig only if A2 + A2+ B} + B3 = I, AjAy + AjAs + B1By + BiB3 = 0,
AlBQ + AQBl + AlBg + A3B1 =0 and A% + A% + 312 + Bg) = [2.
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Let G = (z,y | 2* =9 = 2% = 27') = Dg. Let v, = >0

1=

0 Q12" + aisx'y € RDg,

where o; = o, € R. Let Hy = (a,b | a*> = b* = 1,ab = ba) = Cy x Cy. We now define the

composite matrix over R as

/ !/
Q) = (11 22 =
AL A,
Ayrlg Ayrlg Qgrlgs Qgrlgy Qgrlgs Qyrlgs Ayt
Qi ()t Dou((h)y (ha)2)  Don((ha)y  (h)s)  Doa((ha)y H(h)a) B2((h)3 H(h)1) Ya((h)yH(ha)2)  Pa((ha)y (k1)) ! (h1)a)
Qo1 ()3 (1) Dor((h)z (h1)2)  Yor ()3 (h)s)  Fon ()3 (h)a) | Poa((h)3 (b)) Poa((h)3(h1)2)  Foa((ha)z (k1)) %z(} )31 (h1)a)
_ | Pt o) Pe)it()e) - Xen(()it()s) - Yei((h) () | Vo) ()0 Yea(()i ()a)  Xea((h)it(a)s) <m>4 (h1)1)
Aylg Ayl Qglgs Qglgy Qglgs Ayl Qy=tgr
Qgg((h)7 (h)1)  Yes((h1)77(h1)2)  Dgs((h)7 (h)s)  Ps((h)3 ' (h1)a) | Xea((hr)7 7 (b)) Doa((h)7'(h1)2)  Ppu((hn)7 " (ha)s) 21 (h1)a)
Wy () 1) Xoa(()y ()s) Voa()i (b)) Yooy a)e) | Coa(()z ())  Voa()i (b)) Voa(h)y (e Cpa((hn)y (h)a)

Qps((h)y () Doa((h)i (h)2)  Yoa((h)y (h)s)  Yoa((h)y H(h)a) | Yoa((h)i (b)) Poa((h)y (ha)2)

where:
[ _
5 (h)i 2 gitg: 5 (h)i = 919
Y ofori={1,2,3,4} " forwhen {i=1,j=5,i=2;=6,i=3j="7Ti=4,j=8}
¢ _
ba (h)i 2 g5 ba (h1)i = g5 'g;

for i = {1,2,3,4}

This results in a composite matrix over R of the following form:

Ypu((h)y!

(h1)3)

Qpa((h);

forwhen {i=1,j=5,i=2,7=6,i=3,j=7,i=4,j =8}.

a1 Qo Q3 Q4 | 5 Qg Q7 O3

Gy Q1 Oy Q3| Qg Q5 Qg 0Of

X1 1| Xy Y, Q3 Q4 Q1 Qg | 7 Qg Qa5 O

O(vy) = i Xi| Yo X . Qg Q3 @y @ | g Qy Qg Qs

o) = =

Xz Y3 | Xy Y, as g Qr Q| Q) Q4 Q3 Qo

Ys X3 | Yy X, g Q5 Qg Q7| Qg Q1 Q2 Q3

Q7 Qg Q5 Qg | 3 Qg Q1 04

Qg Q7 Qg Q5 | Gy Q3 04 O

Y (h1)a)

Theorem 32. Let R be a finite commutative Frobenius ring of characteristic 2. Then the

matrix
Al Bl A2 B2
]8 Bl Al Bg A2
G = [I Qv } =
o Lot Ay By Ay By
Bs As By As
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where Ay = circ(ag,an), By = circlas,aq), Ay = circlas,a8), By = circ(ay,
ag), As = circ(as,ag), Bs = circ(ar, ag), Ay = circ(on, aq) and By = cire(ag, as) gen-
erates a self-dual code C over R, if and only if the following equations hold:

Ai+ A3+ B? 4+ B; = I, (6.7)
A1A3 -+ A2A4 + BlB3 + BQB4 == 07 (68)
AlBg + AgBl + A2B4 + A4B2 = 0, (69)

Ai+ Al + B + B} = L. (6.10)

Proof. The code C is self-dual if and only if GG is the zero matrix over R. Let

A1 By A2 Bs

X — By A1 By A2 ’
As By Ay By
Bs A Bs Ay

we have to show that X X7 = I5. Now,

A1 Bl AQ BQ Al Bl A3 Bg
XXT _ Bl Al BQ AQ Bl Al B3 A3 _
Az B3 Ay By Ay By Ay By

By Ay By Ag By Ay By Ag

where
A%+ A2+ B+ B 2A1B; +2A,B,

Xy = 2 2 2 2

Y

A1A3 + A2A4 + BlBg + BQB4 AlBg + AgBl + AQB4 -+ A4BQ

X, —
7 | ABy + A3By + AyBy + A;By Ay As + AyA, + ByBs + ByB,

)

A2+ A2+ B2+ B} 2A3Bs+2A4By
2A3Bs +2A,B, Ai+ A2+ B2+ B2

3

This will equal to 18 only if A% + A% + B% + B% = —[27 AlAg + A2A4 + BlBg + B2B4 = 0,
AlBg+AgBl +AQB4—|—A4BQ =0 and A%+AZ+B§+B§ = —[2. ]

We note that in the above constructions we have only used the dihedral group with 8
elements and the cyclic group of order 8. There are other possible groups of order 8 that
one could consider, for example, the quaternion group of order 8, QJg, the group Cy x C} or
the group Cy x Csy x Cs.
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6.2 Numerical Results

In this section, we employ Theorems and to search for binary self-dual codes over
F4 of length 32. We then lift these codes over to the ring F4 + ulF4; to obtain codes whose
binary images are the self-dual codes with parameters [64,32,12]. We finally use the well-

known extension and neighbour methods to search for binary self-dual codes with parameters
(68,34, 12]. We implement the searches using the software MAGMA ([4]).

6.2.1 Singly-Even Binary [64, 32, 12] Self-Dual Codes as Images of
Fy 4+ ulFy lifts of Codes over F,

We first employ Theorem [31] to search for self-dual codes of length 32 over F,. Since the

matrices A1, Bi, A, By, A3 and B3 in Theorem are fully defined by their first rows, we

only list the elements that appear in these rows. We label these as r4,,75,,74,,78,, 74, and
T, respectively. We summarise the results in Table

Table 6.1: Theorem [31] over F,
Ci T'Ay By T Ay "By TAs "By Yr, (C> |AUt (Ci) ‘

¢ (0,0) (1,1)  (w,1)  (w+1,1) (LLw) (Lw+1) [32,16,8);;  293%
C; (0,w) (Lw+1) (0,00 (w+1,w) (w,0)  (0,w+1) [32,16,8];; 2193%5.7
C; (0,00 (1,1)  (0,w) (1,w) (w,0) (w,1)  [32,16,6]; 283
Cy (0,0) (1,1)  (w,0)  (w+1,0) (0,w)  (0,w—+1) [32,16,6]; 2935
Cs (0,1) (w,w+1) (0,1) (w,w) (w,0) (1,w) (32,16, 6]; 273
Cs (Ow) (Lw+1) (0,1) (wWH+lw+1) (w+1,0) (L,w+1) [32,16,6]; 2113

We now lift the codes in Table to Iy + ulFy, as a result we obtain extremal binary
self-dual codes of length 64 given in Table

Table 6.2: The F, 4+ ulF,-lifts of C; and the § values of the binary images

code A, B, T A, B, T A rp, B in Weao |Aut(C;)|
[1 C5 (Aa 9) (4a 7) <8a 1) (67 4) (47 8) (17 6) 8 24
L, Cs (81) (C,5 (2,9 (E,C) (C,2) (9,F) 8 25

We now employ Theorem (32| to search for self-dual codes of length 32 over 4. Since the
matrices Ay, By, As, B, A3, B3, A4 and By in Theorem [32] are fully defined by their first rows,
we only list the elements that appear in these rows. We label these as r4,,75,,74,, 7B, " A5, "B,
T4, and rpg, respectively. We summarise the results in Table |6.3]

We now lift the codes in Table to Fy + ulF4, as a result we obtain extremal binary
self-dual codes of length 64 given in Table
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Table 6.3: Theorem [32] over Fy

C:  ra rB, TA, B, T A4 B, TA, B, ¥, (C) |Aut(C;)]
¢ (0,00 (0w (W+L1) (W+hew) (@+ho) (w+L1) (0,w) (0,0) [3216,8;  293%
C: (0,00 (Lw) 0w (Wtlwtl) 0w+l (W+Lw) (0,w)  (1,0) [32,16,8); 2°3-5-31
¢ (0,1) (Lw) (1,0) (w+1,1) 1,1)  (w+1,0)  (0,w) (L,1) [3216,8; 293%5.7
€ (Ow) (ww+1) (w, 1) (w+1,w) (w,w) (w+1L1) (0,w+1) (ww) [32,16,8); 2123.7
¢ (0,0)  (0,w) (1,0) Lwtl) (Lwtl) (L0 (0,0)  (0,0) [32,16,6],  2°3%
Cs (0,0) (0, w) (1,1) (1,w) (1,w) (1,1) (0,w) (0,0) [32,16,6]; 283

¢ (0,0)  (Lw) (1,0) (w, 1) (1,1) (w, 0) 0,w)  (1,0) [32,16,6]; 26

Cs (0,0) (1,w) (1,w) (w,w+1) (1,w+1) (w,w) (0,w) (1,0) [32,16,6]; 233

Co (0,1) (1,w) (1,w) (w+lLw+1) (Lw+l) (w+1lw) (0,w) (1,1) [32,16,6]; 25

Table 6.4: The Fy + ulF4-lifts of C; and the § values of the binary images

code A, B, A, B, T A, B, A, re, B in Weo  |Aut(C)|
K, Cy (0,2) (9,4) (2,4) (5,F) (2,F) (5,4 (0,4) (9,2) 0 29
K, Ci (0,1) (9,4) (9,2) (7.3) (9,3) (7,2) (0,4) (9,1) 0 91
K; Cy (0,1) (9,6) (L4) (7,F) (LF) (7,4 (0,6) (9,1) 0 25
Ky C; (0,0) (1,6) (1,8) (6,B) (1,B) (6,8) (0,6) (1,0) 0 24
Kys C; (0,0) (9,6) (1,A) (4,9 (1,9 (4,4) (0,6) (9,0) 36 24

6.2.2 New Extremal Binary Self-Dual Codes of Length 68 from
Fy + ulFy Extensions and Neighbours

We now apply Theorem [J] to the ¥piaiur,- images of the codes in Tables and [6.4]

Without loss of generality we assume that the first 16 entries of the extension vector X

(in Theorem [9) are 0, which narrows down the search field remarkably. The results are
tabulated in Table[6.5, where 1 + u in Fy + uFy is denoted as 3.

Table 6.5: New codes of length 68

D C (x17, T18y - - -, T32) ¢ v [in Weso
Cosn  In  (1,0,0,3,u,1,3,1,3,3,1,1,3,0,1,0) 3 0 38
Cosz K3 (3,1,1,3,u,u,0,4,0,0,0,3,1,1,1,3) 1 1 38
Coss K3  (3,3,1,1,0,u,0,u,0,1,0,3,1,1,3,3) 1 1 46
Cess Ko (u,1,u,u,1,3,3,3,u,1,1,u,4,0,3,3) 3 2 67
Cess K1 (0,0,1,0,1,3,1,3,1,0,1,0,3,0,3,1) 3 3 77
Cess K1 (1,1,0,3,0,u,u,u,1,1,1,0,1,3,0,3) 3 3 78
Cosr L (1,3,1,3,1,0,1,0,1,3,1,3,1,1,0,0) 1 3 81
Coss Kz (0,u,1,1,4,3,0,1,0,1,1,3,14,1,3,u) 3 3 179
Coso K3 (1,0,0,3,u,3,u,3,1,3,3,3,1,1,1,u) 1 4 92
Cespo K3 (uv,v,3,3,1,1,1,1,3,0,3,3,1,1,0,u) 1 4 94
Cesa1 Ka (L,u,1,0,u,u,1,4,1,1,0,u,u,u,1,1) 1 4 119

We now employ Definition to investigate the possible neighbours of the codes in
Table Without loss of generality we assume that the first 34 entries of = are 0, the last
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half of z is given in the table below. As a result, we find two new codes which are listed in

Table [6.6]

Table 6.6: New codes of length 68 as neighbours
D C x v B
Ces12  Ces11 (1010110101000110000001111110000011) 4 107
Ces1z Ceso (1011111011101111011000100111110111) 4 115
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Chapter 7

Composite G-Codes over Formal
Power Series Rings and Finite Chain
Rings

In this chapter, we take the code construction given in Section and study composite G-
codes over formal power series rings and finite chain rings. In particular, we show that the
composite G-codes over the infinite ring R, are ideals in the group ring R, G and we show
that the dual of a composite G-code is again a composite G-code in this setting. Moreover,
we extend some known results on projections and lifts of G-codes over the finite chain rings
and over the formal power series rings to composite G-codes. Additionally, we extend some
known results on y-adic G-codes over R, to composite G-codes and study these codes over
principal ideal rings. Please see [5, [17], 29, 130, [31] for some examples of work on codes over
formal power series rings and finite chain rings. The work in this chapter is a generalisation
of the work from [I7]. Here, we show that one can construct an infinite family of composite
group codes via lifts of composite group codes formal power series rings and finite chain rings.
That is, we give codes in this chapter the structure of composite group codes by employing
the extended isomorphism introduced earlier in this thesis, and we study projections and
lifts of such codes. The work presented in this chapter is published in [56].

7.1 Composite G-codes and Ideals in the Group Ring
R G

In this section, we show that the composite G- codes are ideals in the group ring R..G and
that the dual of the composite G- code is also a composite G- code in this setting. These
two results are a simple generalization of Theorem 3.1 and Theorem 3.2 from [I7]. We use
the same arguments as in [I7] to prove our results.
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For simplicity, we write each non-zero element in R, in the form ~‘a where a = ay +
ayy+ -+ -+ with ap # 0 and 7 > 0, which means that a is a unit in R.

We note that if v = y91ay, g1 +72a4,g0 + - - - + 7' ay, g, € R G, then each row of Q(v)
corresponds to an element in R.,G of the following form:

* lg. . g.
vy = Z’Y e Qg;,9:95:9i> (71)

i=1
where %9 ag;.g; € Reo, Giy gj; € G and j is the jth row of the matrix Q(v). In other words,
we can define the composite matrix Q(v) as:

lgl 91 lgl g2 lgl g3 l
Y ag, g Y2 Ag,9, VTP AgyLgy -0 YT Ag g,
192 g1 lyg 92 l92 93 !
VI gy g VTP Agy, g Y B Agyrgy oo Y Mgy, g,
Qv) = . : . . : : (7.2)
lgnl g1 a l9n2 92 a lgn3 93 a lgnn an q,
Y 91 Y gnyg2 Y gnzgs - VI Agn gy

where the elements g;, are simply the group elements G. Which elements of G these are,
depends how the composite matrix is defined, i.e., what groups we employ and how we define
the ¢; map in individual blocks. Then we take the row space of the matrix Q(v) over Ru
to get the corresponding composite G-code, namely C(v).

Theorem 33. Let R, be the formal power series ring and G a finite group of order n. Let
H; be finite groups of order r such that r is a factor of n with n > r and n,r # 1. Also,
let v € RwG and let C(v) = (Q2(v)) be the corresponding code in R. Let I(v) be the set of
elements of RyoG such that >"~Ya;g; € 1(v) if and only if (Y1a1,v2as,...,v"a,) € C(v).
Then 1(v) is a left ideal in Ry G.

Proof. We saw above that the rows of 2(v) consist precisely of the vectors that correspond
to the elements of the form v; = > 7", fyl"jz‘gi ag; 9:95:9i I RooG, where fylgjz‘gi g 9 € Roo,
i, g;, € G and j is the jth row of the matrix Q(v). Let a = Y yYa;g; and b = > ~Yb;g; be
two elements in I(v), then a + b= Y (y%a; +vb;)g;, which corresponds to the sum of the
corresponding elements in C(v). This implies that I(v) is closed under addition.

Let w; = >_~'b;g; € RooG. Then if wy corresponds to a vector in C(v), it is of the form
> (Yay)vs. Then wywy = Y ~ibigi Y (va;)v; = Y 4"bn'a;gw; which corresponds to
an element in C(v) and gives that the element is in I(v). Therefore I(v) is a left ideal of
R..G. O

Next we show that the dual of a composite G-code is also a composite G-code.

Let I be an ideal in a group ring R..G. Define R(C) = {w | vw = 0, Yv € I}. It follows
that R(I) is an ideal of RG.

Let v = yl1ag, g1 +7'92a4,g9+ - -+ ay, g € RooG and C(v) be the corresponding code.
Let Q : RoG — R” be the canonical map that sends y1a,, g1 + Y'2a4,g2 + - - - + 7'onay, g,
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to (Ylorag,,y'ozag,, - ,v'ma,,). Let I be the ideal Q71(C). Let w = (wy,wa, ..., w,) € C*.
Then the operator of product between any row of Q(v) and w is zero:

[(7lgj1g1 a9j191 ) ’Ylghgl agjggm cee a7lgj”gl anan)? (wh wa, . .. awn>] = 07 Vj (73)
Which gives
Zvl“’jigi ag, Wi =0, Vj. (7.4)
i=1

Let w = Q7Y (w) = > v*iw,,g; and define W € Ro,G to be W = yFo1b,, g1 + v*92by, g0 +
<o 4 Akonb, g, where
k
yFoib,, =~ % lwg_fl. (7.5)
Then . .
k
Y Atiag, gwi =0 = > A%y gy by =0, (7.6)
i=1 =1
Here, g;,9:9; 1= gj;» thus this is the coefficient of g;, in the product of w and v}, where v}
is any row of the matrix Q(v). This gives that w € R(I) if and only if w € C*.
Let ¢ : R" — R,G by ¢(w) = W, then this map is a bijection between C* and
R(Q7(C)) = R(I).

Theorem 34. Let C = C(v) be a code in RoG formed from the vector v € RoG. Then
Q7 YC*) is an ideal of RyG.

Proof. The composite mapping Q(¢(C1)) is permutation equivalent to Ct and ¢(C*) is an
ideal of Ry, GG. We know that ¢ is a bijection between C* and R(Q27'(C)), and we also know
that Q7!(C) is an ideal of R, G as well. This proves that the dual of a composite G-code is
also a composite G-code over the formal power series ring. O

7.2 Projections and Lifts of Composite G-codes

In this section, we extend more results from [I7]. In fact, many of the results presented in
this section are a consequence of the results proven in [31] and a simple generalization of
the results proven in [17].

We first show that if v € R, G then Q(v) is permutation equivalent to the matrix defined
in Equation ([1.12]). For simplicity, we write each non-zero element in R, in the form ~'a
where a = ag + a;y+ -+ --- with a9 # 0 and 7 > 0, which means that a is a unit in R.
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Theorem 35. Let v = v%a, g1 + 720492 + - - + 797 ay, g, € RooG, where a,, are units in
R,. Let C be a finitely generated code over Re,. Then

lgl g1 lgl g2 lgl g3 lg
109
Y gy 90 Y T2 gryge Y T3 gy ags YT gy, g
192 91 l92 g2 l92 g3 lg
2, 9N
Q(U) B VT gy gr Y T2 Agyngs Y T gygs e YT Ay gy
- . . . . . )
lgn, 91 lgnggo lgnq g3 l
VI g g VTR Agrge Y T Qg gs Y Qg gy

1s permutation equivalent to the standard generator matriz given in Equation .

Proof. Take one non-zero element of the form y™°ag,, where my is the minimal non-negative
integer. By applying column and row permutations and by dividing a row by a unit, the
element that corresponds to the first row and column of Q(v) can be replaced by 7. The
elements in the first column of matrix Q(v) have the form ~' ag, with Iy, > mg and ay, a

unit, thus, these can be replaced by zero when they are added to the first row multiplied by

[ _ . . . . .
—9 " (ay,) ! Continuing the process using elementary operations, we obtain the standard
generator matrix of the code C given in Equation ((1.12)). OJ
Example 7.2.1. Let G = (z,y | 2* = 1,9* = 2} yay™t = 27!) = Qg. Let
3
i i
v = E (Oéz'+1iU + Q45T y) € R.Qs,
i=0
where a; = oy, € Roo. Let Hy = (a,b | a* = b* = 1,ab = ba) = Cy x Cy. We now define the
composite matrix as:
!
A /
3 4
()zgl—lgl [0} —1(]2 th—llh (191’1.(/4 ugflgs u_f/flgs a_qfl_zn (ngl—lg8
Qi ((h)y (1) For ()3 (h)2)  Xor((h)3(hn)s)  For((ha)y (ha)a) Qgrlgs Qgslgs Qg3 lgr Aoy gs
Qg 1((h1)3  (ha)1) ad’l(U’l)g (h1)2) a¢>1((h1) L(h1)s) a¢1((h1)§1(hl)4) ag§195 agglyo a97197 asi;lgs
Qo (b)) ()1 Fon ()7 (h)2) Yo () ()s)  For () (h1)a) Qoo Yor'oe Yorler Yorles
Qglg Ayl Ayl Qglgy Qglgs Ayl O‘gr? g7 Qylgs
(nglgl ay 92 agglgz aglflm am((m);(mh) O‘m((hn;l(hl)z) 0‘@4(<m);1(m>3) am((hl);l(hlh)
Qg=lg, Qg-lgy Qg-lgs Qg-lgy Qos((h)3 (h1)1)  Ya((h)7 (h1)2)  Xoa((h)3 ' (h1)s)  Noa((h1)3 ' (h1)a)
Qoz'on Ygq Qg los Qozloa Qoa((h)7 (h)1)  Ppa(()7 (h1)2)  Xou((h)7 (h1)s)  Doa((h)7 ' (hn)a)
where:
h)i 2 )i 2 go !
b (h1)i = 91 ' gi 5 (h1)i = g5 9
1 4

in A} and A, respectively. This results in a composite matriz over Ro

for i ={1,2,3,4}
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for when {i =1,

;4 and j =1+ 4},

of the following form:



Q1 Qg (3 O4 | Oy Qg Q7 O8
Qy (1 Oyg Q3| g Q5 Qg Q7
a3 Q4 Q1 Q9 | Oy Qg O Og
ay Q3 Qo (1 | g Q7 Qg O
Qr Qg o5 Qg | x; Q4 O3 Q9
ag Q7 Qg O | g Q1 Qo (O3
s Qg o7 Qg | 3 Qg (1 Oy
Qg Q5 (g Q7 | g (3 Q4 O

If we let v = 2 + Y2 (1 + y)zy + V(1 + v + 732y + v*2’y € ReoQs, where (z,y) = Qs,
then

0 0 0 7 0 YA+ Pl+r+9) 7
0 0 7 0 7 0 YA+ Pl+y+97)
0 7 0 0 V(L +y+9%) 7 0 P +7)
7 0 0 0 P+ PO+ 7 0
PA+v+9) AA+9) 0 7 0 7 0 0
7 PA+y+97)  F(1+9) 0 7 0 0 0
0 7 PA+y+9) FA+9) 0 0 0 7
P +7) 0 7 VA +y+9%) 0 0 7 0
and C(v) is equivalent to
7 0 0 0 0 YA+y) P+ r+7) o0&
0 9% 0 0 o0& 0 YA+ YA+ +9)
00 7 0 P(A+7+9%) 7 0 V(1+7)
00 0 9 A(1+7) 2PA+v+9%) v 0

Clearly C(v) = (Q(v)) is the [8,4,4] extended Hamming code.
We now generalize the results from [I7] on the projection of codes with a given type.

Proposition 7.2.1. Let C be a composite G-code over R, of type

{(mo)f, () ()

with generator matriz Q(v). The code generated by V;(2(v)) is a code over R; of type

{Gyme)fe, (ym)h, .
code generated by W;(2(v)) is equal to

, (yms=1)ks=1} where my is the largest m; that is less than e. Also, the

{(Ti(c1), ¥i(ea), ..., Ui(cn)) | (c1,¢2,...,¢q) €C}. (7.7)

Proof. 1If m; > e — 1 then ¥; sends v M’ where M’ is a matrix, to a zero matrix which
gives the first part.
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The code C is formed by taking the row space of Q(v) over the ring Ry, i.e. Y1ajv; +
Y2agvy + -+ + yma,v, where ylia; € Ry and v; are the rows of Q(v). If w = lia,v;,
then W;(w) = ¥;(v'a;)¥;(v;) by the equation given in where W;(v;) applies the map
coordinate-wise. This gives the second part. O]

Since a composite G- code over R, is a linear code, the following results are a direct
consequence of some results proven in [31]. We omit the proofs.

Lemma 7.2.2. Let C be a composite G-code of length n over R, then,
(1) C* has type 1™ for some m,
(2) C = (CH)* if and only if C has type 1* for some k,
(3) If C has a standard generator matriz G as in equation (1.13), then we have

(i) the dual code C+ of C has a generator matriz

H - <BO77« BO,T‘*l e BO,2 BO,l Ikr) y (78)
where By = —>1_| BoyAl_,,_,— Al forall1<j<r;

(ii) rank(C)+rank(C*t)=n.

Example 7.2.2. If we take the generator matriz G of a code C from Example we can
see that

1000 0 1+  14y++2 1
,10 100 ) 1 0 1+y  14+7+92
G=1v gl 5 ;
0010 1+vy+7 1 0 1+~
0001 1+  14+v+72 1 0

which 1s the standard generator matrixz- here,

0 1+ 14+y+92 1
1 0 1+  1+9+42
A0,1: 9
I+~v+7y 1 0 I+~
1+y  14+7+72 1 0

In this case the generator matriz of the dual code C*+ of C has the form:

H= <B071 Ikl) .

Now,
T
Bo,1 - _Ao,p
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thus

0 —(1+7) —(1+7+9% —1 1000

B ~1 0 —(1+7) —(1Q+~v4+9%) 01 0 0
-+ +9Y) —1 0 —(14+v) 00 10
—(1+7v) —(1+~v+ -1 0 0001

We also have
rank(C) + rank(Ct) =4 +4 =8 =n.

Proposition 7.2.3. Let C be a self-orthogonal composite G-code over R.,. Then the code
U,(C) is a self-orthogonal composite G-code over R; for all i < occ.

Proof. We first show that W;(C) is self-orthogonal. Let v € R,,G and (Q2(v)) = C(v) be
the corresponding self-orthogonal composite G-code. This implies that [v,w] = 0 for all
v,w € (Q(v)) = C(v). This gives that

Zvlwl = Z W (v) Wy (w;) (mod ") = Uy([v, w])(mod 4*) = 0 (mod ~").

Hence ¥,;(C) is a self-orthogonal code over R;. To show that W;(C) is also a G-code, we
notice that when taking U;(C) = ¥;((Q(v))), it corresponds to ¥;(v) = W;(yl1a,, )91 +
Ui(ylo2ag,)gs + -+ + Ui(vlmay, )gn, then W;(C) € R;G. Thus ¥;(C) is also a composite G-
code. O

Definition 54. Let i,j be two integers such that 1 <i < j < oo. We say that an [n, k| code
Cy over R; lifts to an [n,k] code Cy over R;, denoted by Cy = Cy, if Cy has a generator
matriz Gy such that W (Gy) is a generator matriz of Cy. We also denote Cy by Wl (Cy). If
C is a [n, k| v-adic code, then for any i < oo, we call V;(C) a projection of C. We denote
U,(C) by C°.

Lemma 7.2.4. Let C be a composite G-code over R, with type 1%. If Q(v) is a standard
form of C, then for any positive integer, i, W;(Q2(v)) is a standard form of U;(C).

Proof. We know from Theorem [35| that 2(v) is permutation equivalent to a standard form
matrix defined in Equation (1.12). We also have that C has type 1%, hence ¥;(C) has type
1%. The rest of the proof is the same as in [31]. O

In the following, to avoid confusion, we let v,, and v be elements of the group rings
RoG and R;G respectively. Let v = Yag, g1 + 72ag,92 + -+ + 7'"ag, 9, € RG, and
C(vs) = (Q(vs)) be the corresponding composite G-code. Define the following map:

Q : ROOG — C(Uoo)y
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(V' ag g1 + 72 ag,92 + - + 9 ag, ) = M(RoGvsc).
We define a projection of composite G-codes over R, G to R;G.

Let
U, : RooG — R,G (7.9)

v Ui(y'a). (7.10)

The projection is a homomorphism which means that if I is an ideal of R G, then W,(1) is
an ideal of R;G. We have the following commutative diagram:

R G Sl} C(Voo)
;) L
RG Q, C(v)
This gives that ¥;Q; = Q1 ¥,, which gives the following theorem.

Theorem 36. If C is a composite G-code over R, then W;(C) is a composite G-code over
R; for alli < oo.

Proof. Let vy € RooG and C(vs) be the corresponding composite G-code over Ro,. Then
21 (Vo) = C(vs) is an ideal of R G. By the homomorphism in Equation and the
commutative diagram above, we know that U;(Q;(vs)) = Q1(¥;(vs)) is an ideal of the

group ring R;G. This implies that ¥;(C) is a composite G-code over R; for all i < co. [

Theorem 37. Let C' be a composite G-code over R;, then the lift of C, C over R;, where

J > 1, is also a composite G-code.

Proof. Let v1 = ag 01 + ag,92 + -+ + @, 0, € R;G and C = ((v1)) be the corresponding
composite G-code. Let vy = By, g1 + Bgpg2 + -+ + Bongn € R;G and C = (Q(vy)) be the
corresponding composite G-code. We can say that v; and v, act as generators of C and C
respectively. We can clearly see that we can have U/ (vy) = U/ (8,,)g1 + W (B,,)g2 + - - - +
UL (By )G = Qg g1 + gy Ga 4+ -+ g, gn € RiG, thus ¥ (vy) is a generator matrix of C. This
implies that the composite G-code C(v;) over R; lifts to a composite G-code over R;, for all
] > O

The following results consider composite G-codes over chain rings that are projections
of y-adic codes. The results are just a simple consequence of the results proven in [31]. For

details on notation and proofs, please refer to [31] and [17].

Lemma 7.2.5. Let C be a [n, k] composite G-code of type 1%, and G, H be a generator and
parity-check matrices of C. Let G; = V,(G) and H; = V;(H). Then G; and H; are generator
and parity check matrices of C* respectively. Let i < j < 0o be two positive integers, then

(i) ¥7'G; = 477G, (mod ~7);
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(i) ' "'H; = +7"H; (mod 7).

(iii) ~7~1C* C C7;

(iv) v =~'vo € C7 if and only if vo € C77%;
(v) Ker(W])=iCi—.

Theorem 38. Let C be a composite G-code over R.,. Then the following two results hold.
(i) the minimum Hamming distance dg(C?) of C' is equal to d = dg(C") for all i < oo;
(ii) the minimum Hamming distance do, = di(C) of C is at least d = dg(Ch).

The final two results we present in this section are a simple extension of the two results
from [31] on MDS and MDR codes over R.,. We omit the proofs since a composite G- code
over Ry is a linear code and for that fact, the proofs are the same as in [31].

Theorem 39. Let C be a composite G-code over Ro,. If C is an MDR or MDS code then
C*t is an MDS code.

Theorem 40. Let C be a composite G-code over R;, and C be a lift of C over R;, where
j >i. IfC is an MDS code over R; then the code C is an MDS code over R;.

7.3 Self-Dual y-adic composite G-codes

In this section, we extend some results for self-dual y-adic codes to composite G-codes over
R.,. As in previous sections, the results presented here are just a simple generalization of
the results proven in [31] and [17].

Fix the ring R, with

Roo— =R — =Ry — Ry

and R, = [F, where ¢ = p" for some prime p and nonnegative integer r. The field I, is said
to be the underlying field of the rings.

We now generalize four theorems from [31]. The first two consider self-dual codes over
R; with a specific type and projections of self-dual codes over R, respectively. The third
one considers a method for constructing self-dual codes over F from a self-dual code over

R;. We extend these to self-dual composite G-codes over R; and R, respectively.

Theorem 41. Let i be odd and C be a composite G-code over R; with type 1% (y)*(y?)k2 ..
(y"=Y*i=1. Then C is a self-dual code if and only if C is self-orthogonal and k; = k;_; for all

7
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Proof. 1t is enough to show that 2(v) where v € R;G and G is a finite group, is permutation
equivalent to the matrix (1.10). The rest of the proof is the same as in [31]. ]

Theorem 42. If C is a self-dual composite G-code of length n over Ry then V;(C) is a
self-dual composite G-code of length n over R; for all © < oco.

Proof. This is a direct consequence of Theorem 3.4 in [3I] and Proposition of this
work. O

Theorem 43. Let i be odd. A self-dual composite G-code of length n over R; induces a
self-dual composite G-code of length n over .

Proof. The first part of the proof is identical to the one of Theorem 5.5 from [I7]. Secondly,
when the map Wi (G) is used in [31], we notice that in our case the map will correspond to
UG = Wi (v) = Wi (Ylorag, ) g1 + Vi (V2 ay,) g2 + - - -+ Wi (ylmay, ) g, assuming that G is the

generator matrix of a composite G-code and v € R;G. Then ¥} ((G) is the generator matrix
of a composite G-code over F,,. n

Theorem 44. Let R = R, be a finite chain ring, F = R/(v), where |F| =q=p",2#p isa
prime. Then any self-dual composite G-code C over F can be lifted to a self-dual composite
G-code over R.

Proof. From Theorem [37] we know that a composite G-code over R; can be lifted to a
composite G-code over R;, where j > 7. To show that a self-dual composite G-code over F
lifts to a self-dual composite G-code over Ry, it is enough to follow the proof in [31]. n

7.4 Composite G-codes over Principal Ideal Rings

In this section, we study composite GG-codes over principal ideal rings. We study codes over
this class of rings by the generalized Chinese Remainder Theorem. Please see [12] for more
details on the notation and definitions of the principal ideal rings.

Let R ,RZ,,.

nilpotency index of v; is e;. Let F/ = jo/('y]). Let

.., R be chain rings, where R/ has unique maximal ideal (y;) and the

A=CRT(R;,,....,R,...,R;).
We know that A is a principal ideal ring. For any 1 <17 < oo, let
Az = CRT(R;» R R{, T st)'

This gives that all the rings Ag are principal ideal rings. In particular, Agj = A. We denote
CRT(R! ...,R.,,...,R:) by Al_.
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For 1 < i < 0o, let C! be a code over R!. Let

¢/ =CRT(C,,....C!,...,C})
be the associated code over A7, Let
Cl, = CRT(C,,...,CL,....C:)

be associated code over A7 . We can now prove the following.

Theorem 45. Let ng be a composite G-code over the chain ring jo that 1s ng is an ideal
in Re,G. Then Cl, =CRT(C. ..., CL,...,C:) is a composite G-code over Al _.

Proof. Let v; € CJ.. We know that v} also belongs to C{. where v} has the form defined in
(7.1). Let v € CZ.. Now if v = CRT(vy,va,...,vy), then v = CRT (v}, v5,...,v¥) and so
v* € CJ giving that CZ_ is an ideal in A7 G, and thus giving that CZ_ is a composite G-code

J
over AZ_. O
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Chapter 8

Conclusion

In this thesis, we presented a number of generator matrices for self-dual codes over a finite
commutative Frobenius ring. We showed that together with our generator matrices and
some well-known code construction methods, one can obtain extremal binary self-dual codes
with new weight enumerators. We introduced a new family of commutative Frobenius rings
and studied group codes over this new alphabet. We extended an established isomorphism
between group rings and a subring of the n x n matrices to enable one to construct complex
matrices, fully defined by the elements appearing in the first row. Moreover, we showed that
our extension has applications to algebraic coding theory and in particular for constructing
generator matrices which can be used to search for new binary extremal self-dual codes - we
presented many examples. We now reflect on the work published and review the importance
of the theory and numerical results.

In Chapter [2, we presented a generator matrix that can be used to search for self-dual
codes over a finite commutative Frobenius ring. We gave the necessary conditions that our
generator matrix has to meet in order to produce a self-dual code over this specific
alphabet. We were able to construct many extremal binary self-dual codes of length 68
only for the simple case when the group is the cyclic group of order 2. A suggestion for
future research is to consider our generator matrix for groups different than the cyclic
group of order 2. One may for example consider groups of higher orders and search for
self-dual codes of higher lengths over different alphabets.

In Chapter |3, we introduced a new family of the commutative Frobenius rings. We studied
group codes over this new alphabet and presented a Gray map associated with this new
family of rings. We showed that one can obtain codes with rich automorphism group via
the Gray map. A suggestion for future research is to consider our new family of rings
together with the Gray map and to construct codes with weight enumerators not known in
the literature. One may for example consider our generator matrix from Chapter 2 and
construct self-dual codes over the ring B, ;, to then obtain the binary images, that is,
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binary self-dual codes. Since we have shown that codes obtained in this way have rich
automorphism groups, we believe that in this way, there is a high chance of finding new
binary self-dual codes of different lengths with new weight enumerators that could not be
obtained from other known techniques or generator matrices.

Chapters [4] [ [6] and [7] are all connected. We firstly extended an established isomorphism
between group rings and a subring of the n X n matrices to then present many of its
applications to algebraic coding theory. In particular, we showed that one can use our
extended isomorphism to construct generator matrices which can be employed to search
for extremal binary self-dual codes with new parameters in their weight enumerators. We
only restricted our attention to binary self-dual codes with parameters [68,34,12], but our
extended isomorphism can be used to construct generator matrices that can be used to
search for extremal binary self-dual codes of different lengths. We also used our extended
isomorphism to introduce a new family of codes that we call composite G-codes. We
studied many properties of this class of codes. A suggestion for future work is to employ
our extended isomorphism and construct generator matrices that can be then used to
search for extremal or optimal codes of different lengths. Another possible direction is to
consider generator matrices over non-commutative rings and explore the possible numerical

outcomes.

Throughout this thesis, we constructed many new binary self-dual codes with parameters

(68,34, 12]. To highlight the contribution of our work we now summarise all the new codes
constructed in this thesis. In particular, we were able to construct the following extremal

binary self-dual codes with new weight enumerators in Wgg o:

B ={38}),
B = {38,46,173,177,181}),
B = {67,167,175,177,179, 181, 183, 187, 191, 197}),
B = {74,77,78,81,157,179, 181, 183, 185, 187, 195, 197, 199, 201, 203, 217}),
B = {92,94,107,115,119}),
B = {110,183, 184, 185, 186, 188, 190, 192, 194, 196, 197, 199, 203, 204, 205, 213}),
B = {117,120, 121, 122,123,124, 192, 210}),
B = {131,132,134, 135,136, 137,138, 139, 141, 143}),
B = {139,140, 141, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152}),
B = {151,152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 170, 172}).

2
Il

5
I

)
I

2
I

5)
I

2
Il

5
I

)
I

—~~ o~~~ 3 ~—~~ Y~~~
I
© 0 N Ut A W N R O

2
Il

95



Appendices

96



Appendix A

Magma Programs

We now give a number of MAGMA programs that can be used and adapted to search for
binary self-dual codes of different lengths. The examples we present are specifically designed
for the generator matrices from Chapters [2] [5 and [6] of this thesis.

A.1 Chapter 2

Here, we present a MAGMA program that one can use to construct a binary [24, 12, 6] self-
dual code with the generator matrix defined in Chapter 2l This code is designed for the
cyclic group of order 3 and can be easily adapted to explore other cases.

t:=Cputime();
SetLogFile("Bisymmetric(1) .txt");

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,12,12)!0;
for i:=1 to 12 do
Mtempl[i,i]:=1;
end for;

Mtemp2:=RMatrixSpace(Rk,6,6)!0;
for i:=1 to 6 do
Mtempl[i,i]:=1;
end for;
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function cycgen(gg)

n

M:

:=3;

for k:=1 to n do

M[k]:=g
temp:=g

g
g;

=RMatrixSpace(Rk,n,n)!0;

for t:=1 to (n-1) do
temp [t+1] :=gg[t];

end for

b

temp[1] :=gg[n];

gg:=tem
end for;

return M;

P

end function;

cou

for
for
for
for
for
for
for
for
for
for

for

vl
B1

v2:

for
for
for
for
for
for
for
for
for

for

1i2:=0 to
i4:=0 to
i6:=0 to
i8:=0 to

1 do
1 do
1 do
1 do

110:=0 to 1 do

i12:=0
i14:=0
i16:=0
i18:=0
i20:=0

3)1[i1,i2,1i2];

B2:=cycgen(v2);

B:=BlockMatrix (2,2,

[
B1,

B2,

nter:=0;
i1:=0 to 1 do
i3:=0 to 1 do
i5:=0 to 1 do
i7:=0 to 1 do
19:=0 to 1 do
i11:=0 to 1 do
i13:=0 to 1 do
i15:=0 to 1 do
i17:=0 to 1 do
119:=0 to 1 do
i21:=0 to 1 do
:=RSpace (Rk,
:=cycgen(vl);
=RSpace(Rk,3) ! [i3,13,13];

to
to
to
to
to

1
1
1
1
1

do
do
do
do
do
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B2,B1
1;

Al:=HorizontalJoin(B,Mtemp2) ;

A2:=HorizontalJoin(Mtemp2,B) ;

=
Il

:=VerticalJoin(A1l,A2);

wl:=RSpace(Rk,3)![i4,15,1i6];
w2:=RSpace(Rk,3)![17,18,1i9];
w3:=RSpace(Rk,3)![110,i11,i12];
w4 :=RSpace(Rk,3)![i13,i14,i15];
w5:=RSpace(Rk,3)![i16,117,118];
w6:=RSpace (Rk,3) ! [119,i20,i21];

S1:=cycgen(wl);
S2:=cycgen(w2) ;
S3:=cycgen(w3) ;
S4:=cycgen(wd) ;
S5:=cycgen (wb) ;
S6:=cycgen(w6) ;

S:
[
S51,52,83,54,
S52,55,56,83,
S53,56,55,52,
S54,53,82,51
D;

BlockMatrix (4,4,

CM:=HorizontalJoin(A,S);

if CM*Transpose(CM) eq Mtempl then
M:=Append (M,CM) ;

end if;

end for;end for;end for;end for;

end for;end for;end for;end for;
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end for;end for;end for;end for;
end for;end for;end for;end for;
end for;end for;end for;end for;

end for;

#M;

for i:=1 to #M do
M1:=M[i];

C:=LinearCode(M1); dm:=MinimumWeight (C);
if (dm ge 6) and IsSelfDual(C) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;

if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M1;
AutomorphismGroup(C) ;

WeightDistribution(C) ;
W sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 11 s
end if;

end if;

end for;

print Cputime(t);
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A.2 Chapter 5

Here, we present a MAGMA program that one can use to construct a binary [16, 8, 4] self-
dual code with the generator matrix defined in Chapter [5], Section [5.3.1] This code can be
easily adapted to other alphabets and codes of other lengths.

t:=Cputime();
SetLogFile (" (Omega(v))");

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,8,8)!0;
for i:=1 to 8 do
Mtempl[i,i]:=1;

end for;

function cycgen(gg)
n:=2;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp;
end for;
return M;

end function;
counter:=0;
for 1i1:=0 to 1 do for i2:=0 to 1 do
for i3:=0 to 1 do for i4:=0 to 1 do

for i5:=0 to 1 do for i6:=0 to 1 do
for i7:=0 to 1 do for i8:=0 to 1 do
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v1:=RSpace(Rk,2)![i1,i2];
v2:=RSpace(Rk,2) ! [13,14];
v3:=RSpace(Rk,2)![i4,i3];
Al:=cycgen(vl);
A2:=cycgen(v2);
A3:=cycgen(v3);

A:=BlockMatrix (2,2,
[

Al1,A2,

A3,A1

1

AA:BlockMatrix (2,2,
[

Al1,A2,

A2, A1

1

wl:=RSpace(Rk,2)![i5,16];
w2:=RSpace(Rk,2) ! [i7,18];

Bl:=cycgen(wl);
B2:=cycgen(w2) ;

B:=BlockMatrix (2,2,
[

B1,B2,

B2,B1

1

CM:=BlockMatrix (2,2,
[

A,B,

B,AA

DK

if CM*Transpose(CM) eq Mtempl then
M:=Append (M,CM) ;
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end if;

end for;end for;end for;end for;

end for;end for;end for;end for;
#M;

for i:=1 to #M do
M1:=HorizontalJoin(Mtempl,M[i]);

C:=LinearCode(M1); dm:=MinimumWeight (C);
if (dm ge 4) and IsSelfDual(C) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;

if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M1;
AutomorphismGroup(C) ;

WeightDistribution(C) ;
W sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 11 s
end if;

end if;

end for;

print Cputime(t);
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A.3 Chapter 6

Here, we present a MAGMA program that one can use to construct a binary [16, 8, 4] self-
dual code with the generator matrix defined in Chapter [0, and specifically in Theorem [31]
This code can be easily adapted to other alphabets and codes of other lengths.

t:=Cputime();
SetLogFile (" (Omega(v_1))");

Rk:=GF(2);
codeF2:=[];
M:=[1;

Mtempl:=RMatrixSpace(Rk,8,8)!0;
for i:=1 to 8 do
Mtempl[i,i]:=1;

end for;

function cycgen(gg)
n:=2;
M:=RMatrixSpace(Rk,n,n)'0;
for k:=1 to n do
M[k] :=gg;
temp:=gg;
for t:=1 to (n-1) do
temp [t+1] :=gg[t];
end for;
temp[1] :=gg[n];
gg:.=temp;
end for;
return M;

end function;
counter:=0;
for 1i1:=0 to 1 do for i2:=0 to 1 do
for i3:=0 to 1 do for i4:=0 to 1 do

for i5:=0 to 1 do for i6:=0 to 1 do
for i7:=0 to 1 do for i8:=0 to 1 do
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v1:=RSpace(Rk,2)![i1,i2];
v2:=RSpace(Rk,2) ! [13,14];
Al:=cycgen(vl);
A2:=cycgen(v2);

=
Il

:=BlockMatrix (2,2,

A1,A2,
A2, A1
D;

wl:=RSpace(Rk,2)![i5,i6];
w2:=RSpace(Rk,2) ! [i7,18];
Bl:=cycgen(wl);
B2:=cycgen(w2) ;

B:
[
B1,B2,
B2,B1
DK

BlockMatrix (2,2,

z1:=RSpace(Rk,2)![i8,15];
z2:=RSpace(Rk,2) ! [i6,i7];
Cl:=cycgen(zl);
C2:=cycgen(z2);

C:
[
C1,C2,
Cc2,C1
1

BlockMatrix (2,2,

CM:=BlockMatrix (2,2,
[

A,B,

C,A

1
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if CM*Transpose(CM) eq Mtempl then
M:=Append (M,CM) ;

end if;

end for;end for;end for;end for;

end for;end for;end for;end for;
#M;

for i:=1 to #M do
M1:=HorizontalJoin(Mtempl,M[i]);

C:=LinearCode(M1); dm:=MinimumWeight (C);
if (dm ge 4) and IsSelfDual(C) then

eql:=false;
for i2:=1 to #codeF2 do
eql:=eql or IsEquivalent(C,codeF2[i2]) ;
end for;
if not eql then

counter:=counter+i1;

counter;

codeF2[counter] :=C;
M1;
AutomorphismGroup(C) ;

WeightDistribution(C);
sk sk ok Kok ok ok ok ok ok ok ok ok ok 1
end if;

end if;

end for;

print Cputime(t);
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