• Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement

      Eger, Philipp G.; Helleis, Frank; Schuster, Gerhard; Phillips, Gavin J.; Lelieveld, Jos; Crowley, John N.; Max Planck Institute for Chemistry; University of Chester (Copernicus Publications, 2019-03-26)
      We present a chemical ionization quadrupole mass spectrometer (CI-QMS) with a radio-frequency (RF) discharge ion source through N2∕CH3I as a source of primary ions. In addition to the expected detection of PAN, peracetic acid (PAA) and ClNO2 through well-established ion–molecule reactions with I− and its water cluster, the instrument is also sensitive to SO2, HCl and acetic acid (CH3C(O)OH) through additional ion chemistry unique to our ion source. We present ionization schemes for detection of SO2, HCl and acetic acid along with illustrative datasets from three different field campaigns underlining the potential of the CI-QMS with an RF discharge ion source as an alternative to 210Po. The additional sensitivity to SO2 and HCl makes the CI-QMS suitable for investigating the role of sulfur and chlorine chemistry in the polluted marine and coastal boundary layer.
    • A two-channel, Thermal Dissociation Cavity-Ringdown Spectrometer for the detection of ambient NO2, RO2NO2 and RONO2

      Thieser, Jim; Schuster, Gerhard; Phillips, Gavin J.; Reiffs, Andreas; Parchatka, Uwe; Poehler, D.; Lelieveld, Jos; Crowley, John N.; Schuladen, Jan; Max-Planck Institut fur Chemie ; University of Heidelberg ; University of Chester (Copernicus Publications, 2016-02-17)
      We describe a thermal dissociation cavity ring-down spectrometer (TD-CRDS) for measurement of ambient NO2, total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs). The spectrometer has two separate cavities operating at  ∼  405.2 and 408.5 nm. One cavity (reference) samples NO2 continuously from an inlet at ambient temperature, the other samples sequentially from an inlet at 473 K in which PNs are converted to NO2 or from an inlet at 723 K in which both PNs and ANs are converted to NO2, difference signals being used to derive mixing ratios of ΣPNs and ΣANs. We describe an extensive set of laboratory experiments and numerical simulations to characterise the fate of organic radicals in the hot inlets and cavity and derive correction factors to account for the bias resulting from the interaction of peroxy radicals with ambient NO and NO2. Finally, we present the first measurements and comparison with other instruments during a field campaign, outline the limitations of the present instrument and provide an outlook for future improvements.