Show simple item record

dc.contributor.authorCabrini, Marina; orcid: 0000-0003-3901-8657; email: marina.cabrini@unibg.it
dc.contributor.authorLorenzi, Sergio; orcid: 0000-0002-1337-7590; email: sergio.lorenzi@unibg.it
dc.contributor.authorTesta, Cristian; orcid: 0000-0002-6064-9851; email: cristian.testa@guest.unibg.it
dc.contributor.authorCarugo, Francesco; email: francesco.carugo@unibg.it
dc.contributor.authorPastore, Tommaso; orcid: 0000-0002-1443-7786; email: tommaso.pastore@unibg.it
dc.contributor.authorManfredi, Diego; orcid: 0000-0002-2876-143X; email: diego.manfredi@polito.it
dc.contributor.authorBiamino, Sara; orcid: 0000-0003-1840-7717; email: sara.biamino@polito.it
dc.contributor.authorMarchese, Giulio; orcid: 0000-0002-4637-5532; email: giulio.marchese@polito.it
dc.contributor.authorParizia, Simone; orcid: 0000-0002-1616-2800; email: simone.parizia@polito.it
dc.contributor.authorScenini, Fabio; orcid: 0000-0002-8974-4860; email: fabio.scenini@manchester.ac.uk
dc.date.accessioned2021-10-17T09:33:50Z
dc.date.available2021-10-17T09:33:50Z
dc.date.issued2021-10-15
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626119/additional-files.zip?sequence=2
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626119/materials-14-06115.pdf?sequence=3
dc.identifierhttps://chesterrep.openrepository.com/bitstream/handle/10034/626119/materials-14-06115.xml?sequence=4
dc.identifier.citationMaterials, volume 14, issue 20, page e6115
dc.identifier.urihttp://hdl.handle.net/10034/626119
dc.descriptionFrom MDPI via Jisc Publications Router
dc.descriptionHistory: accepted 2021-10-12, pub-electronic 2021-10-15
dc.descriptionPublication status: Published
dc.description.abstractLaser bed powder fusion (LPBF) is an additive manufacturing technology for the fabrication of semi-finished components directly from computer-aided design modelling, through melting and consolidation, layer upon layer, of a metallic powder, with a laser source. This manufacturing technique is particularly indicated for poor machinable alloys, such as Alloy 625. However, the unique microstructure generated could modify the resistance of the alloy to environment assisted cracking. The aim of this work was to analyze the stress corrosion cracking (SCC) and hydrogen embrittlement resistance behavior of Alloy 625 obtained by LPBF, both in as-built condition and after a standard heat treatment (grade 1). U-bend testing performed in boiling magnesium chloride at 155 and 170 °C confirmed the immunity of the alloy to SCC. However, slow strain rate tests in simulated ocean water on cathodically polarized specimens highlighted the possibility of the occurrence of hydrogen embrittlement in a specific range of strain rate and cathodic polarization. The very fine grain size and dislocation density of the thermally untreated specimens appeared to increase the hydrogen diffusion and embrittlement effect on pre-charged specimens that were deformed at the high strain rate. Conversely, heat treatment appeared to mitigate hydrogen embrittlement at high strain rates, however at the slow strain rate all the specimens showed a similar behavior.
dc.languageen
dc.publisherMDPI
dc.rightsLicence for this article: https://creativecommons.org/licenses/by/4.0/
dc.sourceeissn: 1996-1944
dc.subjectlaser powder bed fusion
dc.subjectAlloy 625
dc.subjectstress corrosion cracking
dc.subjecthydrogen embrittlement
dc.titleStress Corrosion Cracking of Additively Manufactured Alloy 625
dc.typearticle
dc.date.updated2021-10-17T09:33:50Z
dc.date.accepted2021-10-12


Files in this item

Thumbnail
Name:
additional-files.zip
Size:
813.2Kb
Format:
Unknown
Thumbnail
Name:
materials-14-06115.pdf
Size:
5.668Mb
Format:
PDF
Thumbnail
Name:
materials-14-06115.xml
Size:
12.17Kb
Format:
XML

This item appears in the following Collection(s)

Show simple item record